os corales pertenecen al phylum Cnidaria y a la clase Anthozoa, e incluyen más de 6000 especies (Jones y Ondean. 1976). El pólipo de los antozoarios tiene la figura de un cilindro elongado, con un extremo aboral fijo al substrato y uno oral con tentáculos. La clase Anthozoa comprende dos subclases: Alcyonaria u Octocoralia (corales blandos) y Zoantharia o Hexacoralia (corales duros). Los pólipos coralinos son en esencia anémonas coloniales, que producen un esqueleto externo compuesto por aragonita. El esqueleto de la colonia se denomina coral, polípero o corallum y el de cada pólipo, copa o cáliz.

Una característica evolutiva que han tenido los corales es su politrofía, es decir, intervienen en diferentes niveles tróficos. Son carnívoros y suspensívoros, pero también son simbiontes con zooxantelas, las cuales son algas verde-azules en las que la zooxanthela proporciona azúcares, glicerina y aminoácidos, entre otros, en tanto que el pólipo coralino retribuye dióxido de carbono, nitrógeno y fosfatos.

La reproducción presenta una amplia variedad de formas: la asexual es la más frecuente mediante gemación y fragmentación; la sexual mediante hermafroditismo y gonocorismo a través de fertilización interna y externa, además de partenogénesis. Los patrones reproductivos están fuertemente influenciados por la periodicidad lunar (Stoddart, 1983; Szmant, 1986).

Dentro de la clase Zoantharia se ubica el orden Scleractinia o Madreporaria, representado por las estructuras más espectaculares de los arrecifes coralinos, con la más alta riqueza específica y biomasa de los ecosistemas conocidos. Sus procesos ecológicos se extienden en espacio y en un tiempo geológico muy prolongado.

Foto: D. Torruco.

Aun cuando estos ecosistemas son ambientes muy estables, su metabolismo y producción biológica puede ser fuertemente afectada por cambios en la estructura de sus comunidades. La Figura 1 muestra la secuencia en tiempo de la formación de un arrecife.

Figura 1. Esquema de la formación de un arrecife.

El florecimiento evolutivo de los corales es cosa del pasado: se conocen 7500 especies, de las cuales, 5000 están extintas. Se han extinguido dos grupos: los Rugosa del Ordovícico, que desaparecieron en el Triásico Temprano; y los Tubulata del Cámbrico Tardío, desaparecidos a finales del Pérmico (Stehli y Wells, 1971). Los formadores de arrecifes se presentan desde el Triásico Medio a la fecha, con su máximo florecimiento entre el Jurásico Superior y el Terciario Inferior; las construcciones arrecifales se presentan desde el Triásico Tardío (Brady, 1974). Los eventos evolutivos más importantes de los corales son: la posición cambiante de los continentes; los cambios en el paleoclima; los eventos de extinción en masa; el desarrollo de una circulación circunglobal en el hemisferio sur que tuvo una destrucción progresiva; y actualmente el cambio climático global (Torruco, 1995).

Los cambios en las estructuras comunitarias incluyen procesos geoquímicos, biológicos y las propias tendencias evolutivas de cada una de ellas. Su conocimiento permite evaluar el estado actual del arrecife y a la vez extrapolar sus respuestas a las condiciones futuras tanto naturales como inducidas. La complejidad de las estructuras arrecifales incluye varios niveles de organización con fuertes interconexiones en una amplia región geográfica.

En el Golfo de México y el Caribe mexicano se presentan las estructuras arrecifales más complejas de nuestro país, donde la dinámica de sus ciclos internos regulan y contribuyen al mantenimiento de la biodiversidad.

En el Atlántico se reportan 35 géneros de corales representados por 84 especies, frente a los 80 géneros y 500 especies del Indopacífico (Walton-Smith, 1954). En el Golfo y el Caribe mexicanos tenemos registradas 60 especies de corales duros y 20 especies de corales blandos (Figura 2); en este registro la abundancia coralina del Caribe es mayor que la del Golfo. Por su parte, Yucatán registra un total de 41 especies de corales duros y 9 especies de corales blandos (Cuadro 1, Anexo VI).

Cuadro 1. Corales duros y blandos de Yucatán.

Orden	Suborden	Familia	Nombre científico		
Corales duros					
Scleractinia	Astrocoeniida	Acroporidae	Acropora cervicornis		
Scleractinia	Astrocoeniida	Acroporidae	Acropora palmata		
Scleractinia	Astrocoeniida	Acroporidae	Acropora prolifera		
Scleractinia	Astrocoeniida	Astrocoeniidae	Stephanocoenia intercepta		
Scleractinia	Astrocoeniida	Astrocoeniidae	Stephanocoenia michelinii		
Scleractinia	Astrocoeniida	Pocilloporidae	Madracis decatis		
Scleractinia	Astrocoeniida	Pocilloporidae	Madracis mirabilis		
Scleractinia	Carophyllida	Caryophylliidae	Cladocora arbuscula		
Scleractinia	Carophyllida	Caryophylliidae	Eusmilia fastigiata		
Scleractinia	Faviida	Astrangidae	Astrangia solitaria		
Scleractinia	Faviida	Faviidae	Colpophyllia amaranthus		
Scleractinia	Faviida	Faviidae	Colpophyllia natans		
Scleractinia	Faviida	Faviidae	Diploria clivosa		
Scleractinia	Faviida	Faviidae	Diploria labyrinthyformis		
Scleractinia	Faviida	Faviidae	Diploria strigosa		
Scleractinia	Faviida	Faviidae	Montastraea annularis		
Scleractinia	Faviida	Faviidae	Montastraea cavernosa		
Scleractinia	Faviida	Faviidae	Montastraea franksi		
Scleractinia	Faviida	Faviidae	Solenastrea bournoni		
Scleractinia	Faviida	Faviidae	Solenastrea hyades		
Scleractinia	Faviida	Oculinidae	Oculina diffusa		
Scleractinia	Fungiida	Agariciidae	Agaricia agaricites		
Scleractinia	Fungiida	Agariciidae	Agaricia fragilis		
Scleractinia	Fungiida	Agariciidae	Agaricia tenuifolia		
Scleractinia	Fungiida	Agariciidae	Agaricia undata		

Este grupo taxonómico es estrictamente marino. Los corales son coloniales o solitarios y viven en la mayoría de los mares del mundo. A pesar de su amplia distribución, las formaciones más extensas se orientan entre las isotermas de los 20°C, aguas someras, oligotróficas, libres de contaminantes y escasa sedimentación. Esta distribución restringida se debe a que en su formación tienen que coincidir factores ambientales y biológicos durante un tiempo considerable.

En el Atlántico mexicano, el análisis de los corales escleractíneos en 151 sitios nos refleja condiciones ecológicas y de substrato que han sido favorables para su desarrollo en cuatro estados de la República: Veracruz, Campeche, Yucatán y Quintana Roo (Figura 2).

La importancia de los corales y las estructuras que forman es muy significativa debido al amplio rango de beneficios que proporcionan: alimento, protección ante la erosión natural de la costa por oleaje y por eventos meteorológicos, materia prima para la construcción, compuestos químicos para medicinas, hábitat de muchas especies con alto valor económico, fijación de nitrógeno y control de bióxido de carbono, entre otros. Están interrelacionados con ecosistemas altamente productivos como las lagunas costeras, humedales y marismas. Son un importante recurso recreativo y estético de múltiples usos como la pesca, la fotografía y el buceo.

Asimismo, son un laboratorio natural para la investigación y la comprensión de procesos biológicos complejos. Por otra parte, aun cuando no tienen una valoración adecuada en el mercado, su importancia económica es considerable, de suerte que es conveniente distinguir el valor de cada recurso. El comercio de los corales es bastante amplio, sobre todo el relacionado con la acuariofilia; actividad en la que ha tenido una respuesta importante y en la que las mayores transacciones corresponden a ejemplares provenientes del Indopacífico.

Cuadro 1. Corales duros y blandos de Yucatán. (Continuación)

Orden	Suborden	Familia	Nombre científico	
Scleractinia	Fungiida	Poritidae	Porites astreoides	
Scleractinia	Fungiida	Poritidae	Porites divaricata	
Scleractinia	Fungiida	Poritidae	Porites furcata	
Scleractinia	Fungiida	Poritidae	Porites porites	
Scleractinia	Fungiida	Siderastreidae	Siderastrea radians	
Scleractinia	Fungiida	Siderastreidae	Siderastrea siderea	
Scleractinia	Meandriida	Meandrinidae	Dichocoenia stokesi	
Scleractinia	Meandriida	Meandrinidae	Meandrina meandrites	
Scleractinia	Meandriida	Mussidae	Isophyllastrea rigida	
Scleractinia	Meandriida	Mussidae	Isophyllia sinuosa	
Scleractinia	Meandriida	Mussidae	Mycetophyllia aliceae	
Scleractinia	Meandriida	Mussidae	Mycetophyllia danaana	
Scleractinia	Meandriida	Mussidae	Mycetophyllia ferox	
Scleractinia	Meandriida	Mussidae	Mycetophyllia lamarckiana	
Scleractinia	Meandriida	Mussidae	Scolymia cubensis	
Scleractinia	Meandriida	Mussidae	Scolymia lacera	
Corales blandos				
Alcyonacea	Scleraxonia	Briareidae	Briareum asbestinum	
Gorgonacea	Holaxonia	Gorgoniidae	Gorgonia flabellum	
Gorgonacea	Holaxonia	Gorgoniidae	Pseudopterogorgia acerosa	
Gorgonacea	Holaxonia	Gorgoniidae	Pseudopterogorgia americana	
Gorgonacea	Holaxonia	Gorgoniidae	Pseudopterogorgia bipinnata	
Gorgonacea	Holaxonia	Pleuxaridae	Eunicea mammosa	
Gorgonacea	Holaxonia	Pleuxaridae	Muricea muricata	
Gorgonacea	Holaxonia	Pleuxaridae	Plexaura flexuosa	
Gorgonacea	Holaxonia	Pleuxaridae	Plexaurella grisea	
Gorgonacea	Holaxonia	Fleuxanuae	Piexaurella grisea	

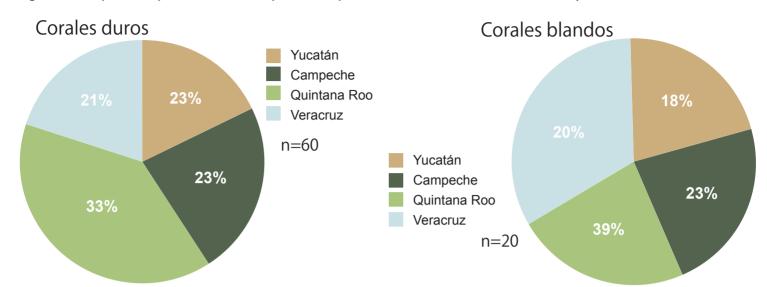


Figura 2. Comparación porcentual de la riqueza de especies de corales en el Golfo de México y el Caribe mexicano.

En México no se registra un comercio fuerte de coral, aunque a nivel local se venden objetos decorativos o souvenirs en los malecones de algunos puertos importantes del Golfo y el Caribe. Según la SEMARNAT, del año 2000 al 2005 se comercializó un total de 55 géneros, de los cuales, sólo 7 eran procedentes de México: 4 del Pacífico y 3 del Atlántico; lo que corrobora el bajo comercio de estas especies en el país. La mayoría de ejemplares se comercializan vivos, ya sea por pieza o por kilogramo, pues gran parte de este tráfico son las llamadas "piedras vivas" que tienen asociada fauna de acompañamiento del arrecife.

En relación al comercio internacional, el Programa de Naciones Unidas para el Medio Ambiente reportó en su informe del Centro Mundial para la Conservación que se venden anualmente casi 12 millones de piezas de coral pétreo. El sureste de Asia fue la mayor fuente de comercialización, pero un gran número es extraído de diferentes naciones insulares entre los océanos Índico y Pacífico. La mayor demanda proviene de Estados Unidos, Europa y Japón. Aun cuando el mayor comercio corresponde a peces arrecifales, los corales vivientes alcanzan cotizaciones de más de 7000 dólares la tonelada; esta cifra no es comparable con la del coral cultivado para producción de caliza que alcanza los 60 000 dólares por tonelada (Wabnitz y Taylor, 2003).

El comercio actual en el país no es una amenaza para las especies de coral. Muchas de las transacciones de coral han sido importaciones transitorias, en las que México ha sido un punto de distribución a otros países y sólo una pequeña fracción corresponde a importaciones definitivas, lo que indica que los destinatarios finales de estas últimas son tiendas de acuarios del país, y que potencialmente podrían requerir más ejemplares. Las exportaciones nacionales han comprendido una pequeña fracción y generalmente en calidad de material de investigación, principalmente farmacológica.

La industria turística soportada por los arrecifes coralinos ha registrado un enorme desarrollo. Sólo para el Caribe esta actividad significó una entrada de divisas de 8900 millones dólares en 2004 y fuente de empleo para 350 000 personas (Torruco y otros, 2006). Este escenario tiene un gran potencial de crecimiento, tomando en cuenta que, debido a las bajas capturas pesqueras, cada vez es más frecuente la transición de los pescadores a prestadores de servicios turísticos y, por otro lado, cada vez más los grandes promotores turísticos incluyen actividades relacionadas con los arrecifes como parte de su estrategia para captar visitantes.

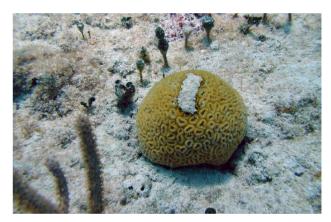
Foto: D. Torruco

El acelerado desarrollo urbano en las zonas costeras del Golfo y el Caribe mexicanos pone en riesgo la sustentabilidad de los arrecifes coralinos, en cuanto resumideros de dióxido de carbono atmosférico, moderadores de erosión costera y proveedores de servicios ecológicos como áreas de reproducción y crianza (Torruco y González, 2002). Pese a que constituyen hábitat relevantes desde el punto de vista económico, ecológico y biogeográfico, no se cuenta con información suficiente acerca de su salud ambiental, componentes bióticos, estructura y funcionamiento.

Los factores principales de amenaza son las tormentas tropicales de diferente magnitud, las descargas de ríos, la erosión y el cambio climático global; así como la contaminación, el desarrollo costero y la utilización turística.

Investigadores del World Resources Institute consideran que la disminución año con año de los arrecifes coralinos es alarmante. Miembros de la International Coral Reef Action Network (ICRAN) y del UNEP Caribbean Environmental Program mencionan que dos terceras partes de los arrecifes del Caribe están en riesgo.

Las medidas de conservación de los arrecifales son un reclamo a diferentes niveles: civil, gubernamental, nacional e internacional. En México, sólo siete especies están sujetas a protección especial por la NOM-059, pero está presente la preocupación por conservar estos sistemas (Cuadro 2).


Cuadro 2. Especies de coral sujetas a protección especial por la NOM-059.

Nombre científico	Tipo de protección	
Acropora palmata	Pr	
Acropora cervicornis	Pr	
Antipathes bichitoea	Pr	
Antiphates grandis	Pr	
Antiphates ulex	Pr	
Plexaurella dichotoma	Pr	
Plexaura homomalla	Pr	

Pr=Protección especial.

Una estrategia en México ha sido decretar áreas naturales protegidas que promueven su conservación y uso sustentable, mediante reglamentos y gestiones a nivel nacional e internacional por parte de diferentes organizaciones: Iniciativa Internacional de los arrecifes de coral (ICRI), Consejo Nacional Científico y Técnico de los arrecifes coralinos en México (COCITAC) y el Sistema Arrecifal Mesoamericano (SAM), entre otras. Asimismo, existen leyes que regulan la utilización de los recursos naturales y por ende su conservación (LGEEPA, Ley del Mar, NOM-059, entre otras). Algunos arrecifes del Golfo y el Caribe mexicanos están bajo cierta legislación de protección y conservación como Áreas Naturales Protegidas, Parques Nacionales Marinos o Reservas de la Biosfera. Independientemente del uso que puedan darle las organizaciones, se consideran áreas de conservación debido a que cuentan con un Plan de Manejo que incluye monitoreo y preservación de áreas particulares.

Con todo, es necesario formular un programa nacional que amalgame todas las acciones y cuya función sea valorar biológica y económicamente los arrecifes. Se requiere, asimismo, la elaboración de una matriz de riesgo y vulnerabilidad para los arrecifes de nuestro país y del mundo.

Fotos: D. Torruco.

