

CONTENTS

CHAPTER 1	IMPROVING BACTERIUM-MEDIATED TRANSFORMATION	7
I.	Isolation and Evaluation of New <i>Agrobacterium</i> Strains	7
II.	Effects of Medium Composition	8
A.	Ammonium Nitrate Induces High-Frequency Transformation	8
B.	Removal of KH_2PO_4 , NH_4NO_3 , KNO_3 , and CaCl_2	9
C.	Effects of Copper Sulfate	9
III.	“Fast Agro-mediated Seedling Transformation”	10
IV	Tissue Browning: Help or Hindrance for Genetic Transformation?	11
V.	Comparison of Vacuum and Pressure Methods	13
VI.	Use of Detergents	13
VII.	Use of Lipoic Acid	14
VII.	Importance of <i>Agrobacterium</i> Preculture	15
VIII.	Wounding Techniques	16
A.	Embryo Piercing and Vacuum Infiltration	16
B.	Micro-Wire Brush Wounding	16
C.	Punctured-hypocotyl Technique	17
IX.	Explants from Cotyledon Cuttings	18
X.	Use of KCl and Rare Earth Elements	18
XI.	<i>Agrobacterium</i> -mediated Transformation of Specific Crops	20
A.	Rice	20
B.	Cotton	20
C.	Apple	21
D.	Wheat	21
E.	Whole Soybean Seedlings	22
F.	Tea	22
G.	Japanese Cedar	23
H.	Grapevine	23
I.	Wormwood	24
J.	Papaya	25
K.	Tomato	26
XII.	Antioxidants Enhance <i>Agrobacterium</i> -mediated Transformation	26
XIII.	Use of a DNA-derived Nano Complex	27
XIV.	Transformation by Suppression of Immune Responses	28
XV.	Vacuum Infiltration of Sprouts for Virus-induced Gene Silencing	28
XVI.	Plant Growth-promoting Rhizobacteria Enhance Transformation	29
XVII.	Heat and High Maltose Enhances Transformation	30
XVIII.	Coculture on Paper Wicks and Vacuum Infiltration	30

XIX.	Temporary-immersion System	32
XX.	Combined Semi- <i>In Vitro</i> and <i>In Vivo</i> Protocol	32
XXI.	Airlift Bioreactor Improves Genetic Transformation	33
XXII.	Effect of Heat Shock	34
XXIII	Transformation of Protoplasts	34
XXIV.	Effect of Quorum-sensing Molecules	35
XXV.	Effects of Extracellular Cellulose and Lectin	36
XXVI.	Effects of the Maize <i>knotted1</i> (<i>kn1</i>) Gene	37
XXVII.	Natural Genetic Modification of Crops by <i>Agrobacterium</i>	37
XXVIII.	Control of Bacterial Contamination during Transformation	38
CHAPTER 2: METHODS FOR DIRECT TRANSFORMATION OF PLANTS		39
I.	Tungsten-based Microparticle Bombardment	39
II.	Comparison of Gene Guns	39
III.	<i>Agrobacterium</i> -Coated Microparticle Bombardment	40
IV.	Microspore Transformation by Combined Biolistics and Agroinfiltration	40
V.	Nano-Biolistics	41
VI.	Amberlite XAD-4 Resin Improves Transgenic Explant Viability	42
VII.	Improved Particle Bombardment Technique	43
VIII.	Plastid Transformation	43
IX.	Coating Procedures for Biolistic Transformation	45
X.	Magnetic Gold Particles Transform Cells in a Magnetic Field	45
XI.	Genetic Transformation Using Microinjection with <i>Agrobacteria</i>	46
XII.	Cell-penetrating Peptides Carry Macromolecules into Cells	47
XIII.	Nano/Micro Technologies	49
XIV.	Uses for Quantum-dots and Cell-penetrating Peptides	49
XV.	Zinc-finger Nucleases Allow Efficient Gene Targeting of Plants	50
XVI.	Spike-dip Transformation	51
CHAPTER 3: GENE FUNCTION, REGULATION, EXPRESSION AND STRATEGIES FOR DETECTING AND SELECTING TRANSENIC PLANT TISSUES		52
I.	Simple Techniques for Exploration of Gene Function	52
II.	High-Throughput GFP Screening of Transformed Plants	53
III.	Encapsulation Technique for Antibiotic Selection of Transformants	54
IV.	Histone Genes Enhance Transformation & Transgene Expression	54
V.	Preservation and Expression of Alfalfa Transgene in “Artificial Seeds”	55
VI.	Enhanced Detection of Weak GFP Expression	56
VII.	Methods for Enhancing Transient Gene Expression	56
VIII.	Sound Regulates Plant Genes and Controls Pathogens	57
IX.	DNA Methylation Inhibitor Enhances Recovery of Regeneration	58
X.	Rapid Assay for Gene Function in Plants	58

CHAPTER 4: HAIRY ROOTS AND <i>rol</i> GENES	60
I. Hairy Roots as an Assay for Light-Induced Cell Damage	60
II. Production of Hairy-root Cultures	60
A. Amberlite XAD-4 & Temporary Immersion Enhance Hairy-root Initiation	60
B. “Easy and Early” Production of Hairy-root Cultures	61
C. Production of Transgenic Roots from Foliar Explants	62
D. Sonication and Heat Enhances Production of Hairy-roots	62
E. Production of Hairy Roots in a Stirred-tank Bioreactor	63
F. Seaweed Enhances Hairy Root Growth and Withanolide Yield	63
G. Increased Growth and Alkaloid Production by Hairy Roots	64
III. Selection of Hairy Roots	64
IV. Products from Hairy-root Cultures	65
A. Mammalian Protein	65
B. Saponins	66
C. Antibacterial Ginsenosides	67
D. Tropane Alkaloids	67
E. Artemisinin	69
F. Valerenic Acid	70
G. Azadirachtin	71
H. Antifungal Compounds	72
I. Human Growth Hormone	72
J. Oral Vaccine for Rabies	73
K. Tanshinone	74
L. Effect of Light on Regulation of Flavone Synthesis	75
M. Saponin	76
N. Taxane	76
O. Iridoid and Phenylethanoid Glycosides	77
P. Xanthone	78
Q. Vanillin	78
R. Alkannin and Shikonin Derivatives	78
S. Trans-resveratrol	79
T. Kaempferol	80
U. Glucosinolates	80
V. Simultaneous Recovery of Two Products	81
V. Novel Applications of <i>A.rhizogenes</i> -mediated Transformation	82
A. Increase of Soil-holding Capacity	82
B. Inhibition of Root-knot Nematodes	82
CHAPTER 5: Other Applications and Effects of Genetic Transformation	84
I. Biosynthetic Pathway Regulation	84
II. Production of a Recombinant Proteins	86
III. Scale-up of Recombinant Human Antibody Yield by BY-2 Cells	87

IV.	Oral Vaccines	88
V.	Control of <i>In Vitro</i> Regeneration	90
A.	SOD Transgene Enhances Shoot Regeneration in Pepper	90
B.	Cyclin D Genes Enhance Banana Regeneration	90
C.	Expression of Gene Enhances Somatic Embryogenesis	91
D.	Nopaline <i>Agrobacterium tzc</i> Gene Enhances Transformation	92
E.	Effects of <i>gfp</i> Genes on Regeneration of Tobacco	92
F.	Down-regulation of Genes Enhances Plant Regeneration	93
G.	Gene Expression Improves Regeneration and Stress Tolerance	94
VI.	Improving Pathogen Resistance and Fruit Taste	95
VII.	Enhancement of Salinity and Drought Stress Tolerance	95
VIII.	Strategies to Improve the Nutritional Value of Crops	97
IX.	Unintended Consequences of Plant Genetic Transformation Procedures	98
X.	Genetic Modification Does Not Interfere with Interaction with AM Fungi	99
XI.	Phytoremediation of Environmental Pollutants	100
XII.	Manipulation of Flower Color in Transgenic Plants	101
XIII.	Effects of an Early Flowering Gene	103
XIV.	Transformation via <i>In Vitro</i> Shoot Grafting	103
XV.	Production of Anthocyanins	104
XVI.	Production of Sweeter Fruits	105
CHAPTER 6: PATENTS		107
I.	Transgenic Bioluminescent Plants	107
II.	Use of a Medium Enriched with a Metal Salt	107
IV.	Heating and Centrifugation	108
V.	Solid Support for Coculture with <i>Agrobacterium</i>	108
VI.	A Pneumatic Capillary Ballistic Gun	108
VII.	Laser Gun	109
VIII.	Use of Stinging Capsules	109
IX.	Non- <i>Agrobacterium</i> Bacterium for Genetic Transformation	110
X.	Stem-dip Protocol for Producing Transgenic Broadleaf Trees	111
XI.	Overexpression of the <i>PGA6</i> Gene Induces Somatic Embryogenesis	111
XII.	Increasing Transformation Efficiency in Plants	112
XIII.	Novel Plant Transformation Method	112
XIV.	Improving Genetic Transformation Efficiency Using a Powder	113
XV.	Copper Amino Acid Chelate Increase Transformation Efficiency	114
XVI.	Nanocarriers Deliver Biomolecules into Plant Cells	114
DIRECTORY OF RESEARCH		116
TAXONOMIC INDEX OF PLANTS		