

CONTENTS

CHAPTER 1	Micropropagation Systems	8
Bioreactor Systems		8
Temporary Immersion Systems		10
Hydropriming System		16
Fingerling Culture		17
Inter-culture System		18
Floral Reversion System		18
Culture on Cellulose Acetate Membranes		19
Comparison of Solid and Liquid Culture Systems		19
Predicting Component Concentrations for New Micropropagation Media		23
Skotomorphogenesis		27
Semi-sterile Micropropagation		28
Partial Photoautotrophic Culture		28
Bulbil-like Body – A New Type of Somatic Embryo Structure		29
“Axenic Hydroponic” Propagation System for <i>In Vitro</i> Plant Culture		30
Embryogenesis or Organogenesis from the Same Explants		30
CHAPTER 2	Micropropagation Techniques	32
Enhancement of Micropropagation by Medium Additives		32
Effects of <i>Meta</i> -Topolins		32
Benzothiadiazole Enhances <i>Ornithogalum</i> Micropropagation		33
Methylglyoxal Promotes Shoot Morphogenesis		34
Polyamines and Hydrogen Peroxide Enhance Regeneration		34
CCC Promotes <i>In Vitro</i> Tuberization of Safed Musli		35
Relationships Between Nutrient Concentrations and Plant Densities		36
Effects of a Novel Aromatic Cytokinin Analogue		36
Thidiazuron and 24-Epibrassinolide Enhance Direct Regeneration		37
Effects of Chitosan and Thidiazuron		38
Glutamine Enhances Regeneration of Somatic Embryos		38
Effect of Carbohydrates Sources on Micropropagation		39
Amino Acids Enhance Duckweed Regeneration		39
Effects of Antibiotics on Micropropagation		40
L-ascorbic Enhances Regeneration of Multiple Plant Species		42
Effect of Exogenous Cobalt on Micropropagation		42
Nanoparticles and Nanotubes Enhance Micropropagation		43
Effect of Smoke Water and Karrikinolide on Micropropagation		44
Plant Protein Enhances <i>Theobroma cacao</i> Regeneration		45
Seaweed Extract Enhances Micropropagation		45
Orange Juice Replaces Growth Regulators for Micropropagation		46
Comparison of Picloram with 2,4-D for Regeneration of <i>Urochloa</i>		46
Effects of Zinc Sulfate and Copper Sulfate		47
Salicylic Acid Protects Against Drought Stress		48

Dodder Extract Enhances Regeneration of Transgenic <i>Medicago sativa</i>	49
Sodium Silicate Improves Quality of Micropropagated Anthurium	49
Sodium Nitroprusside Stimulates Growth and Shoot Regeneration	49
Effects of Exogenous Iron	50
Comparison of Various Media for Micropropagation	50
A Non-destructive Method for Measuring <i>In Vitro</i> Plant Size and Color	51
Supporting Materials	51
Gelling Agents	51
Inorganic Supporting Materials	52
Rooting of Micropropagules	53
Use of Phenol Plugs	53
Phoroglucinol and Red LED Light Improve <i>In Vitro</i> Rooting	54
Additive Effects of Auxins and Copper on Sorghum Root Induction	54
Effect of Various Light Wavelengths on Rooting of Microcuttings	55
<i>Ex Vitro</i> Rooting Reduces Micropropagation Costs	55
Carbon Nanotubes Enhance <i>In Vitro</i> Rooting	56
<i>Azospirillum brasiliense</i> Enhances <i>In Vitro</i> Rooting	57
Interactive Effects of Light and Melatonin on <i>Withania</i> Root Growth	57
Bacterium Enhances Jojoba Salt Tolerance During <i>In Vitro</i> Rooting	58
Pineapple and Green Algal Extracts Enhance Rooting of Microshoots	58
Effects of Silicon on <i>In Vitro</i> Rooting of Devil's Claw	59
Enhancement of Root Formation by Hydrogen Peroxide	59
Effects of Putrescine and Polyamine Inhibitors	60
Effects of CuO Nanoparticles	60
Horticultural Rooted Mini-cutting Propagation System for Coffee	61
Effect of Oligosaccharin on <i>In Vitro</i> Rooting	61
Etiolation and Flooding of Donor Plants Enhance Rooting of Explants	62
Humic Acid Enhances <i>In Vitro</i> Rooting of Azalea Micropropagules	63
Genetic Effects on Micropropagation	63
Enhanced Regeneration Via Expression of <i>BABYBOOM</i> Gene	63
Cyclin D Genes Enhance Banana Regeneration	65
Nopaline <i>Agrobacterium tzc</i> Gene Enhances Regeneration	65
Effects of <i>gfp</i> Genes on Regeneration of Tobacco	65
Expression of Superoxide Gene Improves Regeneration and Stress Tolerance	66
Down-regulation of Genes Enhances Plant Regeneration	66
Culture Vessels	67
Effects of Different Culture Vessels on <i>Eucalyptus</i> Micropropagation	67
Effects of Culture Vessel Seals	68
Control of Sex Expression in Micropropagated Cucumbers	69
Enhancement of Micropropagation by Bacteria and Fungi	70
Mycorrhization	70
Bacterial Biotization	72
Fungal Biotization	82
Biotization by Both Bacteria and Fungi	84
Cold Temperatures and Gibberellic Acid Break Dormancy	85

Control of Hyperhydricity	86
Float Hydroculture	86
Effect of BAP and Type of Gelling Agent	86
Silver Ions and Nanoparticles Reduce Hyperhydricity	86
Effect of Increased Calcium in the Culture Medium	87
Control of Hyperhydricity with Trichloroacetate	88
Control of Hyperhydricity with Anti-ethylene Compounds	88
Reversion of Hyperhydricity	89
Effects of Radiation on Micropropagation	90
Effects of Low-dosage Gamma Rays and Methyl Jasmonate	91
Effects of Low-dosage Ultra-violet Radiation	91
Laser Irradiation Enhances Blackberry Regeneration	93
Effects of Light Quality and Intensity on Micropropagation	94
Weak Magnetic Fields Enhance <i>Genista aetnensis</i> Micropropagation	95
Effects of Stress on Micropropagation	100
Control of Browning and Shoot Necrosis	100
Comparison of Tissue Culture with Bud Manipulation for <i>Musa</i> Sucker Production	101
Micropropagation Using a Cytokini Pulse and Micrografting	105
CHAPTER 3 Reducing Costs of Micropropagation	105
Reducing Costs of Banana Micropropagation	107
Use of Panela	107
Use of Banana Juice	107
Low-cost Potato Micropropagation	107
Simple Inexpensive Methods for Orchid Micropropagation	108
Low-cost System for Commercial Production of Virus-free Sweet Potato	109
Low-cost Medium Supplements for Micropropagation of <i>Daphne</i> Species	110
Low-cost Pineapple Micropropagation	111
Botanical Starches as Substitutes for Agar	111
Low-cost Micropropagation of Taro	112
Low-cost Micropropagation of Banana	113
Low-cost Bromeliad Micropropagation	113
Low-cost Micropropagation of Fujian Cherry	114
Media from Brown Seaweeds Enhance Micropropagation	115
Table Sugar as a Low-cost Option for Sugarcane Micropropagation	115
CHAPTER 4 Acclimatization and Conservation of <i>In Vitro</i> Plantlets	116
Acclimatization	118
Low-cost Acclimatization of Sweet Potato	118
Effect of Light Intensity on Acclimatization	118
Effect of Silver Nitrate on Rooting and Acclimatization of Ginger	118
Bacteria Promote Acclimatization of Micropropagated Plantlets	119
Seismomorphogenesis: A New Approach to Acclimatization	119
Enhancement of Acclimatization by Arbuscular Mycorrhizal Fungi	120
Effects of <i>In Vitro</i> Silicon Supplementation on Acclimatization of Banana	121
Acclimatization of Coffee Micropropagules	122

Porous Substrates Enhance <i>Ex Vitro</i> Acclimatization of Micropropagules	123
Floating Hydroponic System Produces Rapid Acclimatization	123
Use of Saturated Salt Solution to Decrease Relative Humidity	124
Improvement of Acclimatization through Elevation of Carbon Dioxide Levels	125
Conservation of Micropropagated Plants	125
Slow Growth Storage	125
 CHAPTER 5 Applications of Micropropagation	 126
Production of Plants with Antibacterial Activity	126
Vitroplants as Sugarcane Seed Sources	126
Mutation Induction In Potato Using <i>In Vitro</i> Systems	127
<i>In Vitro</i> Flowering and Fruiting	128
Phytoremediation of Metal-contaminated Soils	129
 CHAPTER 6 Patents	 130
Wuschel Gene Expression Promotes Somatic Embryogenesis	130
Classifying Somatic Embryos by Their Ability to Germinate	130
Maturing and Synchronizing Conifer Somatic Embryos	130
 CHAPTER 7 Micropropagation of Selected Plants	 132
Orchids	132
Various Brassinolides Stimulate <i>In Vitro</i> Growth of <i>Phalaenopsis</i>	132
Effects of Media, Sucrose Concentrations and Natural Additives	133
Effects of Chitosan and Thidiazuron Combinations on Micropropagation	133
Comparison of Fertilizers as Culture Media	133
Effects of Hyaluronic Acid and Sodium Alginate on Multiplication	134
Comparison of Gelling Agents	135
Rescue of Immature Seeds Permits Orchid Hybridization	136
Recovery of Orchid Polyploids	136
High-Germinating Synthetic Seeds	137
Benzimidazole Derivatives Enhance Orchid Micropropagation	137
Douglas Fir	138
Palm Trees	139
Oil Palm	139
Desert Date Palm	140
Date Palm	140
Stevia	141
Potato	142
Comparison of Systems for Potato Microtuber Production	142
Effect of Sucrose Concentration on Potato Microtuber Formation	143
One-step, Cultivar Independent Potato Micropropagation	143
Avoidance of Calcium Deficiency Symptoms and Enhancement of Growth	144
Ultrasonication Enhances <i>In Vitro</i> Growth and Development of Potato Shoots	145
Effect of Transplant Age on Crop Yields from Micropropagated Potato Plants	145

Lily	146
Humic Acid Enhances Lily Bulblet Production	146
Effect of Ozone Treatments on <i>In Vitro</i> Propagation of <i>Lilium</i>	146
Effects of Mild Abiotic Stress	146
RESEARCH DIRECTORY	148
TAXONOMIC INDEX	165