

19. Organization in Time	409
20. Patterns of Nutrition in Development	448
21. Dormancy, Senescence, and Death	466
22. Action of Hormones and Growth Substances	494

SECTION V

Physiology of Special Organisms

23. Tree Physiology	519
24. Physiology of Marine Algae	529
25. Parasites and Disease	540
26. Symbiosis	552

SECTION VI

Physiology of Plant Distribution and Communities

27. Physiology of Plants Under Stress	563
28. Physiological Factors in Plant Distribution	577
29. Plants and Man	594

Author Index	613
Index of Plant Names	619
General Index	625

Detailed Contents

SECTION I

Introduction and Background**CHAPTER 1. Introduction**

3

Plant Physiology	3
Plants and Animals	3
Characteristics of Plants and Plant Life That Lead to Specialized Physiology	4
Evolution	5
Applied Botany and Economics	6
Additional Reading	7

CHAPTER 2. Chemical Background

8

Solutions	8
<i>Solutions of Gas</i>	9
<i>Concentrations</i>	9
Acids and Bases	11
Buffers	11
Colloids	12
Chemical Bonds	14
<i>Electrovalent or Ionic Bonds</i>	14
<i>Covalent Bonds</i>	15
<i>Hydrogen Bonds</i>	16
<i>Weak Forces</i>	16
Oxidation and Reduction	16
Some Organic Chemicals	17
Carbohydrates	23
<i>Stereoisomers</i>	23

<i>Lactones</i>	24
<i>Disaccharides and Polysaccharides</i>	27
<i>Sugar Alcohols, Uronic Acids, and Sugar Acids</i>	28
Amino Acids, Peptides, and Proteins	29
Nucleic Acids	36
Additional Reading	41

CHAPTER 3. The Cell

42

The Cell Theory	42
The Cell and Its Parts	43
<i>Cell Wall</i>	43
<i>Membranes</i>	47
<i>Nucleus</i>	50
<i>Endoplasmic Reticulum</i>	50
<i>Golgi Apparatus and Dictyosomes</i>	54
<i>Ribosomes</i>	54
<i>Mitochondria</i>	55
<i>Plastids</i>	56
<i>Glyoxysomes and Peroxisomes</i>	58
<i>Other Subcellular Structures</i>	58
<i>The Vacuole</i>	58
Water and Cells	59
<i>Water Potential</i>	59
<i>Diffusion</i>	60
<i>Differentially Permeable Membranes</i>	60
<i>Osmosis</i>	60
<i>Osmotic Potential and Pressure Potential</i>	61
<i>Measuring $\psi\pi$</i>	62
<i>Water Potential in Cells</i>	64
<i>Movement of Water Between Cells</i>	65
<i>Imbibition</i>	66
<i>The Old Approach to Osmosis and Water Movement</i>	67
Growth of Cells	67
Additional Reading	69

CHAPTER 4. Structure and Growth of Familiar Higher Plants

70

Germination	70
Roots	71
The Stem	77
Leaf Structure	80
Flowers and Fruit	81
Meristems: Patterns of Growth	84
Additional Reading	84

SECTION II**Plant Metabolism**

CHAPTER 5. Energy Conversion	87
<i>Synthesis of ATP</i>	87
<i>An Electron Transport Chain</i>	89
<i>Measuring Energy Changes</i>	91
<i>High Energy Compounds</i>	93
<i>Group Transfer Reactions</i>	94
<i>The "Energy Charge" Concept</i>	95
<i>Enzyme Action</i>	97
<i>Additional Reading</i>	99

CHAPTER 6. Respiration	100
-------------------------------	-----

<i>Introduction</i>	100
<i>Glycolysis</i>	100
<i>Reactions</i>	100
<i>Energy Balance</i>	102
<i>Krebs Cycle</i>	103
<i>Formation of Acetyl-Coenzyme A</i>	103
<i>Reactions of the Cycle</i>	104
<i>Energy Balance</i>	107
<i>Pentose Shunt</i>	107
<i>Reactions</i>	107
<i>Energy Balance</i>	109
<i>Fermentation</i>	110
<i>Localization of Pathways</i>	110
<i>Links Between Respiration and Other Metabolic Systems</i>	112
<i>Mobilization of Substrates</i>	112
<i>Glycolysis Intermediates</i>	114
<i>Shunt Intermediates</i>	115
<i>Krebs Cycle Intermediates</i>	115
<i>Anaplerotic Reactions</i>	115
<i>Control of Respiration</i>	117
<i>Pasteur Effect</i>	117
<i>Feedback and Allosteric Control</i>	117
<i>Cofactor Control</i>	119
<i>Side Reactions</i>	119
<i>Other Respiratory Systems and Oxidases</i>	119
<i>Phenol Oxidases</i>	119
<i>Ascorbic Acid Oxidase</i>	120
<i>Catalase and Peroxidase</i>	121
<i>Glycolic Acid Oxidase</i>	121
<i>Participation of Other Oxidases in Respiration</i>	121
<i>Factors Affecting Respiration of Tissues</i>	122
<i>Respiratory Quotient and Substrates of Respiration</i>	122

<i>Age and Tissue Type</i>	123
<i>Temperature</i>	126
<i>Oxygen</i>	127
<i>Carbon Dioxide</i>	128
<i>Salts</i>	129
<i>Wounding and Mechanical Stimulus</i>	129
The Study and Measurement of Respiration	130
<i>Measurement of Rates</i>	130
<i>Understanding Pathways</i>	132
<i>Enzymology</i>	134
Additional Reading	136

CHAPTER 7. Photosynthesis

137

Introduction	137
Historical Background	139
Light Reactions	142
<i>Light</i>	142
<i>Pigments</i>	143
<i>Electron Transport</i>	148
<i>The Light Trap</i>	150
<i>Release of Oxygen</i>	151
<i>Alternative Mechanisms</i>	151
<i>Energy Balance</i>	152
The Dark Reactions	153
<i>Introduction</i>	153
<i>Radioactivity and Chromatography</i>	153
<i>The Calvin Cycle</i>	156
<i>Energy Balance of the Calvin Cycle</i>	160
<i>Photosynthesis of Other Compounds</i>	161
<i>Other Carbon Dioxide Fixations</i>	163
Photorespiration	166
Factors Affecting Photosynthesis	167
<i>Temperature</i>	167
<i>Oxygen</i>	168
<i>Carbon Dioxide</i>	169
<i>Light</i>	170
The Evolution of Photosynthesis	171
Additional Reading	172

CHAPTER 8. Nitrogen Metabolism

173

Nitrogen Fixation	173
<i>Symbiotic Nitrogen Fixation</i>	173
<i>Nonsymbiotic Nitrogen Fixation</i>	174
<i>Mechanism of Nitrogen Fixation</i>	177
Nitrate Reduction	179
<i>Mechanism of Nitrate Reduction</i>	179

<i>Nitrate Reduction and Metabolism</i>	180
Absorption of Nitrogen by Plants	181
<i>Inorganic Nitrogen</i>	181
<i>Organic Nitrogen</i>	182
Amino Acids	183
<i>Amination</i>	183
<i>Transamination</i>	184
<i>Carbon Transformation</i>	185
<i>Some Metabolic Patterns</i>	188
Amides	190
<i>Synthesis</i>	190
<i>Metabolism</i>	192
<i>Behavior of Glutamine and Asparagine</i>	192
Proteins	195
<i>Types of Proteins</i>	195
<i>Protein Formation and Breakdown</i>	196
<i>Protein Turnover</i>	197
Peptides	197
Purines and Pyrimidines	198
Alkaloids	201
Additional Reading	206

CHAPTER 9. Polymers and Large Molecules

207

Polysaccharides	207
<i>Starch</i>	207
<i>Inulin</i>	208
<i>Cellulose</i>	208
<i>Other Polysaccharides</i>	208
Lipids	209
<i>Chlorophyll</i>	212
<i>Isoprenoids</i>	212
<i>Phenols and Aromatic Compounds</i>	217
<i>Aromatic Amino Acids, Indoleacetic Acid</i>	217
<i>Simple Phenols and Lignin</i>	217
<i>Flavones and Anthocyanins</i>	219
<i>Additional Reading</i>	221

SECTION III**Soil, Water, and Air: The Nutrition of Plants****CHAPTER 10. Soil and Mineral Nutrition**

225

The Soil	225
<i>Soil Texture and Structure</i>	225
<i>Soil Water</i>	226
<i>Nutrients</i>	228

Mineral Nutrition	231
<i>Chemical Composition of Plants</i>	231
<i>Macro- and Micronutrients</i>	232
<i>Essential Nutrients</i>	234
<i>Culture Media</i>	234
Macronutrients	235
<i>Calcium</i>	235
<i>Magnesium</i>	237
<i>Potassium</i>	238
<i>Nitrogen</i>	238
<i>Phosphorus</i>	239
<i>Sulfur</i>	239
Micronutrients	240
<i>Iron</i>	241
<i>Manganese</i>	242
<i>Boron</i>	242
<i>Copper</i>	243
<i>Zinc</i>	243
<i>Molybdenum</i>	243
<i>Chlorine</i>	244
A Key to Nutrient Deficiency Symptoms	244
Beneficial and Toxic Elements	245
<i>Beneficial Elements</i>	245
<i>Replacement</i>	246
<i>Toxic Elements</i>	246
Trace Elements in Economic Plants	246
<i>Deficiency Diseases and Toxic Effects in Animals</i>	246
<i>Plants as Indicators</i>	247
Additional Reading	248

CHAPTER 11. Uptake and Movement of Water

249

Water Movement	249
<i>The Problem of Water Loss</i>	249
<i>Entry of Water into Cells</i>	250
<i>Apparent Free Space</i>	250
Entry of Water into Roots	251
<i>Root Pressure</i>	251
<i>Apoplast and Symplast</i>	251
<i>Mechanism of Absorption</i>	251
Pathway of Water Through Tissues	253
The Ascent of Sap	255
<i>The Forces Required</i>	255
<i>Cohesion of Water</i>	256
<i>Vessel Size</i>	257
<i>Alternative Theories</i>	257
Flow of Water	258
Summary	260
Additional Reading	260

Detailed Contents

Detailed Contents

CHAPTER 12. Uptake and Transfer of Solutes

261

Mechanisms for the Movement of Solutes	261
Diffusion	261
<i>Membrane and Solute Characteristics</i>	261
<i>Diffusion and Permeability</i>	262
<i>Accumulation by Diffusion</i>	263
Movement of Ions	263
<i>Special Problems</i>	263
<i>Antagonism</i>	263
<i>Electrochemical Potential</i>	264
<i>Donnan Equilibrium</i>	265
<i>Membrane Potential</i>	265
Active Transport	267
<i>Definition</i>	267
<i>Demonstration and Proof of Active Transport</i>	267
<i>Charge Balance</i>	269
Mechanisms of Active Transport	270
<i>Source of Energy</i>	270
<i>Possible Mechanisms</i>	270
<i>Importance</i>	272
Additional Reading	272

CHAPTER 13. Translocation

273

The Problems of Translocation	273
Tissues of Translocation	274
<i>Xylem</i>	274
<i>Phloem</i>	274
Location of Solutes	274
<i>Ringing Experiments</i>	274
<i>Analysis of Tissues</i>	275
<i>Tracer Experiments</i>	276
<i>Summary</i>	280
Xylem Transport	280
Phloem Translocation	282
<i>Bulk Flow</i>	282
<i>Activated Diffusion</i>	284
<i>Cytoplasmic Streaming</i>	284
<i>Interface Diffusion</i>	286
<i>Electroosmosis</i>	286
<i>Summary</i>	286
Circulation	287
Additional Reading	290

CHAPTER 14. Leaves and the Atmosphere

291

Leaves	291
Gas Exchange	294

<i>Diffusion Through Pores</i>	294
<i>Carbon Dioxide Diffusion Through Stomata</i>	295
<i>Stomatal Movement</i>	298
<i>Factors Affecting Stomatal Action</i>	299
<i>Mechanism of Stomatal Action</i>	301
<i>Control of Stomata</i>	302
<i>Nonstomatal Gas Exchange</i>	304
<i>Photosynthesis</i>	304
<i>Environmental Factors</i>	304
<i>Plant Factors</i>	307
<i>Photorespiration</i>	309
<i>Rates and Efficiency of Photosynthesis</i>	311
<i>Water Loss</i>	311
<i>Guttation</i>	311
<i>Transpiration</i>	312
<i>Transpiration</i>	312
<i>Factors That Affect Transpiration</i>	312
<i>Control of Transpiration</i>	314
<i>Necessity of Transpiration</i>	315
<i>Measurement of Transpiration</i>	315
<i>Heat Exchange</i>	316
<i>Plants and the Weather</i>	317
<i>Additional Reading</i>	318

<i>Biochemical Level</i>	340
<i>Cellular Level</i>	340
<i>Organizational Level</i>	343
<i>Initiation of Events</i>	346
<i>Rhythmic Behavior</i>	346
<i>Additional Reading</i>	347
<i>General References for Section IV</i>	348

CHAPTER 16. Sexual Reproduction in Higher Plants

349

<i>The Gametophyte Generation</i>	349
<i>Carpel and Egg</i>	349
<i>Anther and Pollen</i>	349
<i>Sex Determination</i>	351
<i>Pollination and Fertilization</i>	352
<i>Pollen Tube Growth</i>	352
<i>Fertilization</i>	352
<i>Embryo Development</i>	353
<i>Capacity to Grow</i>	353
<i>Embryo Growth</i>	354
<i>Embryo Growth in Vitro</i>	355
<i>Embryogenesis in Cell and Tissue Culture</i>	356
<i>Totipotency of Plant Cells</i>	357
<i>One-Way Streets in Development</i>	357
<i>Fruit and Seed Formation</i>	360
<i>Fruit Set</i>	360
<i>Fruit and Seed Development</i>	360
<i>Fruit Ripening</i>	361
<i>Germination</i>	363
<i>Conditions for Germination</i>	364
<i>Mobilization of Reserves</i>	365
<i>Seedling Nutrition</i>	366
<i>Additional Reading</i>	367

CHAPTER 17. Patterns of Growth

368

<i>Seedling Growth</i>	368
<i>Photomorphogenesis</i>	368
<i>Initiation of Organs in Tissue Cultures</i>	370
<i>Root Growth</i>	373
<i>Terminal Meristem</i>	373
<i>Control of Root Growth</i>	374
<i>Differentiation of Tissues</i>	375
<i>Lateral Roots</i>	376
<i>Shoot Growth</i>	376
<i>Terminal Meristem</i>	376
<i>Stem Growth</i>	377

SECTION IV
The Developing Plant—Plant Behavior

CHAPTER 15. Interpretation of Growth and Development

321

<i>Introduction</i>	321
<i>Growth and Its Measurement</i>	321
<i>Parameters of Growth</i>	321
<i>Growth Versus Development</i>	322
<i>Kinetics of Growth</i>	323
<i>Measurement of Development</i>	327
<i>Kinds of Developmental Control</i>	327
<i>Genetic Controls</i>	327
<i>Organismal Controls</i>	330
<i>Auxins</i>	330
<i>Gibberellins</i>	333
<i>Cytokinins</i>	333
<i>Ethylene</i>	333
<i>Abscisic Acid</i>	337
<i>Hypothetical Growth Substances</i>	337
<i>Environmental Controls</i>	337
<i>Level of Action of Controls</i>	338
<i>The Genetic Level</i>	338

<i>Leaf Primordia</i>	379
<i>Differentiation</i>	381
<i>Growth of Leaves</i>	384
<i>Floral Development</i>	386
<i>Additional Reading</i>	389

CHAPTER 18. Spatial Organization

<i>Direction of Growth</i>	390
<i>Tropic Responses</i>	390
<i>Geotropism</i>	390
<i>Perception of Gravity</i>	391
<i>Mechanism of Response to Gravity</i>	393
<i>Phototropism</i>	395
<i>Phototropic Light Perception</i>	397
<i>Thigmotropism</i>	398
<i>Other Tropisms</i>	399
<i>Shape</i>	399
<i>Correlative Effects</i>	399
<i>Other Factors</i>	400
<i>Apical Dominance</i>	401
<i>Nastic Responses</i>	402
<i>Epinasty</i>	403
<i>Thermonasty</i>	403
<i>Nyctinasty</i>	403
<i>Seismonasty</i>	405
<i>Traps</i>	406
<i>Rapid Leaf Movements</i>	407
<i>Nutation</i>	408
<i>Additional Reading</i>	408

CHAPTER 19. Organization in Time

<i>Introduction</i>	409
<i>The Importance of Timing</i>	409
<i>Ways to Measure Time</i>	410
<i>How Biological Clocks Might Work</i>	410
<i>Hourglass</i>	410
<i>Oscillator</i>	410
<i>Interactions</i>	411
<i>Extrinsic Rhythms</i>	413
<i>Timing of Flowering</i>	413
<i>Photoperiodism and Vernalization</i>	413
<i>The Discovery of Photoperiodism</i>	413
<i>Night Interruptions and Dark Measurement</i>	417
<i>Sites of Perception</i>	419
<i>Phytochrome</i>	419
<i>The Mechanism of Phytochrome Action</i>	423

390

<i>The Range of Reactions Mediated by Phytochrome</i>	423
<i>Some Attempted Explanations of Phytochrome Action</i>	424
<i>Active and Inactive Phytochrome</i>	424
<i>Some Recent Ideas</i>	425
<i>High Energy Reactions</i>	426
<i>The Relationship Between Flowering and Rapid Responses</i>	427
<i>Floral Induction</i>	428
<i>Induction and Floral Development</i>	428
<i>Perception and Translocation of Floral Stimulus</i>	428
<i>Inhibitors</i>	433
<i>Growth Substances</i>	433
<i>Anthesin</i>	435
<i>Changes at the Shoot Apex</i>	436
<i>Phytochrome as an Hourglass Timer</i>	437
<i>Rhythmic Processes</i>	437
<i>Circadian Rhythms</i>	437
<i>Circadian Rhythms and Photoperiodism</i>	440
<i>The Nature of the Oscillating Timer</i>	440
<i>Vernalization</i>	441
<i>Cold Induction</i>	441
<i>Interactions with Other Factors</i>	443
<i>Site of Perception of Cold Stimulus</i>	443
<i>Vernalin and Gibberellins</i>	443
<i>The Nature of the Vernalization Process</i>	444
<i>Summary: Flowering and Floral Induction</i>	446
<i>Additional Reading</i>	447

CHAPTER 20. Patterns of Nutrition in Development

448

<i>Photosynthesis and Nutrition</i>	448
<i>The Onset of Photosynthesis in Seedlings</i>	449
<i>Patterns of Nutrition in the Mature Plant</i>	450
<i>Patterns of Assimilation</i>	450
<i>Patterns of Export from Leaves</i>	452
<i>Fruit Formation</i>	455
<i>Wood Formation</i>	456
<i>Nutritional Traffic Control</i>	457
<i>Movement of Nutrients Toward Sinks</i>	457
<i>Apical Dominance and Nutrition</i>	459
<i>Hormonal Control of Translocation</i>	459
<i>Hormone Control of Photosynthesis</i>	462
<i>Additional Reading</i>	465

CHAPTER 21. Dormancy, Senescence, and Death

466

<i>Dormancy</i>	466
<i>Causes of Dormancy</i>	467
<i>Environmental Factors</i>	467

<i>Abscisic Acid</i>	467
<i>Interaction of ABA with Other Growth Substances</i>	469
<i>Seed Dormancy</i>	473
<i>Types of Seed Dormancy</i>	473
<i>Light Requirement</i>	474
<i>Temperature</i>	474
<i>Seed Coat Effects</i>	476
<i>Other Factors</i>	478
<i>Dormancy of Vegetative Organs</i>	478
<i>Day Length and Dormancy</i>	478
<i>Other Factors</i>	479
<i>Interacting Factors</i>	479
<i>Breaking Dormancy</i>	481
<i>Senescence and Death</i>	483
<i>Patterns of Aging and Death</i>	483
<i>Metabolic Aspects of Senescence</i>	483
<i>Nutritional Competition in Senescence</i>	486
<i>Effects of Growth Factors</i>	486
<i>Abscission</i>	488
<i>Additional Reading</i>	493

CHAPTER 22. Action of Hormones and Growth Substances

494

<i>Introduction</i>	494
<i>Auxins</i>	494
<i>Synthesis, Movement, and Inactivation</i>	494
<i>IAA and Ethylene Formation</i>	497
<i>IAA Effects on Specific Enzymes</i>	497
<i>Auxins and Translocation</i>	497
<i>Cell Wall Effects</i>	498
<i>Effects on RNA and Protein Synthesis</i>	499
<i>Structure and Activity</i>	501
<i>Gibberellins</i>	502
<i>Synthesis and Distribution</i>	502
<i>Elongation</i>	504
<i>Flowering</i>	505
<i>Enzyme Synthesis</i>	505
<i>Mechanism of Action</i>	506
<i>Cytokinins</i>	506
<i>Distribution</i>	506
<i>Effects</i>	506
<i>Prevention of Senescence</i>	508
<i>Enzyme Formation</i>	509
<i>Cytokinins as Constituents of RNA</i>	509
<i>Cytokinin Action</i>	511
<i>Abscisic Acid</i>	512
<i>Abscisic Acid Effects</i>	512
<i>Abscisic Acid Action</i>	513

<i>Ethylene</i>	513
<i>Ethylene Effects</i>	513
<i>Mechanism of Action</i>	513
<i>Other Substances That Influence Growth</i>	514
<i>Summary of Hormone Actions</i>	515
<i>Additional Reading</i>	516

SECTION V**Physiology of Special Organisms****CHAPTER 23. Tree Physiology**

519

<i>Special Characteristics of Trees</i>	519
<i>Assimilation</i>	519
<i>Wood Formation</i>	521
<i>Hormones</i>	521
<i>Photoperiod</i>	522
<i>Water</i>	522
<i>Temperature</i>	522
<i>Assimilation</i>	522
<i>Reaction Wood and Orientation Movement</i>	522
<i>Form</i>	525
<i>Crown Shape</i>	525
<i>Plagiotropism</i>	525
<i>Consequences of Perennial Growth</i>	525
<i>Metabolism of Perennial Tissue</i>	525
<i>Dormancy</i>	526
<i>Nutrient Salvage Prior to Leaf Fall</i>	527
<i>Communities of Trees</i>	527
<i>Additional Reading</i>	528

CHAPTER 24. Physiology of Marine Algae

529

<i>Introduction</i>	529
<i>Productivity of Marine Algae</i>	529
<i>Peculiarities of Algal Metabolism and Biochemistry</i>	530
<i>Chemotaxonomy</i>	530
<i>Pigments</i>	531
<i>Small Molecules</i>	531
<i>Storage Compounds</i>	531
<i>Calcareous Algae</i>	533
<i>Reactions to Environmental Factors</i>	533
<i>Light</i>	533
<i>Temperature</i>	534
<i>Desiccation</i>	535
<i>pH</i>	535
<i>Salinity and Osmotic Potential</i>	535

Wave Action	536
Some Physiological Mechanisms	536
Seasonal Growth	536
Uptake of Solutes	537
Antifouling	538
Pheromones	538
Additional Reading	539

CHAPTER 25. Parasites and Disease

540

Introduction	540
Infection	541
Organisms of Disease	541
Resistance	541
Immunity	541
Stimulus to Infection	542
Invasion	542
Toxins	542
Physiological Responses to Parasitism	543
Respiration	543
Photosynthesis	544
Nitrogen Metabolism	544
Translocation	544
Growth Substances and Morphological Response	545
Responses to Environment	550
Injury	550
Host-Parasite Interaction	550
Additional Reading	551

CHAPTER 26. Symbiosis

552

Types of Symbiosis	552
Mycorrhiza	553
Orchids	555
Lichens	555
Lichen Associations	555
Metabolic Interactions	557
Water Relations	559
Pigments	559
Additional Reading	559

SECTION VI**Physiology of Plant Distribution and Communities****CHAPTER 27. Physiology of Plants Under Stress**

563

Introduction	563
Effects of Stress	563
Types of Stress	564

Stress Resistance: Avoidance and Tolerance	565
Measurement of Hardiness	565
Drought	566
Drought Avoidance and Tolerance	566
Consequences of Dehydration	566
Mechanisms of Drought Tolerance	567
Heat	568
Limits of Heat Tolerance	568
Mechanisms of Heat Tolerance	568
Low Temperature and Freezing	569
Chilling and Freezing	569
Theories of Freezing Resistance	570
Frost Hardening	571
Radiation	571
Soil Conditions	572
Altitude	572
Pollution	573
Additional Reading	576

CHAPTER 28. Physiological Factors in Plant Distribution

577

Introduction	577
Physiological Factors in Ecology	577
Factors Affecting Vegetation	579
Vegetation Types	579
Historical Factors	579
Geographical Factors	580
Rainfall	580
Relative Humidity	581
Temperature	581
Wind	584
Periodicity and Season Length	584
Factors Affecting Flora	585
Climatic	585
Physiographic	587
Pollution	589
Competition	590
Succession	591
Physiological Mechanisms of Competition	592
Additional Reading	593

CHAPTER 29. Plants and Man

594

Introduction	594
Man's Impact on the Landscape	594
Levels of Interaction	595
Modification of the Environment	595
Modification in Agriculture	597

<i>Environment Management</i>	598
Productivity and Agriculture	598
<i>Use of Growth Factors</i>	599
<i>Timing</i>	604
<i>Environmental Control</i>	604
“The Sun’s Work in a Cornfield”	608
Adaptation and Development of Plants for Special Needs	610
Plants and Pollution	610
The Role of the Plant Physiologist	611
Additional Reading	612

Author Index	613
Index of Plant Names	619
General Index	625

SECTION

I

Introduction and Background
