

The Editors**Prof. Dr. Jaroslav Doležel**

Inst. of Experimental Botany
Lab. Mol. Cytogenetics & Cytometry
Sokolovská 6
77200 Olomouc
Czech Republic

Prof. Dr. Johann Greilhuber

University of Vienna
Department of Systematic and
Evolutionary Botany
Rennweg 14
1030 Vienna
Austria

Dr. Jan Suda

Charles Univ., Fac. of Science
Dept. of Botany
Benátská 2
12801 Prague
Czech Republic

and

Institute of Botany
Academy of Sciences
Průhonice 1
25243 Průhonice
Czech Republic

All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

Library of Congress Card No.: applied for
British Library Cataloguing-in-Publication**Data**

A catalogue record for this book is available from the British Library.

Bibliographic information published by the Deutsche Nationalbibliothek
Die Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available in the Internet at <<http://dnb.d-nb.de>>.

© 2007 WILEY-VCH Verlag GmbH & Co.
KGaA, Weinheim

All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photostriking, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

Printed in the Federal Republic of Germany
Printed on acid-free paper

Typesetting Asco Typesetters, Hong Kong
Printing betz-Druck GmbH, Darmstadt
Binding Litges & Dopf Buchbinderei GmbH, Heppenheim
Wiley Bicentennial Logo Richard J. Pacifico

ISBN 978-3-527-31487-4

Contents**Preface** XVII**List of Contributors** XXI

1	Cytometry and Cytometers: Development and Growth 1
	<i>Howard M. Shapiro</i>
	Overview 1
1.1	Origins 1
1.2	From Absorption to Fluorescence, from Imaging to Flow 2
1.2.1	Early Microspectrophotometry and Image Cytometry 3
1.2.2	Fluorescence Microscopy and the Fluorescent Antibody Technique 3
1.2.3	Computers Meet Cytometers: The Birth of Analytical Flow Cytometry 4
1.2.4	The Development of Cell Sorting 7
1.3	The Growth of Multiparameter Flow Cytometry 8
1.4	Bench-tops and Behemoths: Convergent Evolution 11
1.5	Image Cytometry: New Beginnings? 14
	References 15
2	Principles of Flow Cytometry 19
	<i>J. Paul Robinson and Gérald Grégoire</i>
	Overview 19
2.1	Introduction 19
2.2	A Brief History of Flow Cytometry 20
2.3	Components of a Flow Cytometer 21
2.3.1	Fluidics 22
2.3.2	Optics 25
2.3.3	Electronic Systems 27
2.4	Flow Cytometric Informatics 30
2.5	Spectral Compensation 33
2.6	Cell Sorting 34
2.7	Calibration Issues 37

2.8	Conclusions	37
	References	39
3	Flow Cytometry with Plants: an Overview	41
	<i>Jaroslav Doležel, Johann Greilhuber, and Jan Suda</i>	
	Overview	41
3.1	Introduction	42
3.2	Fluorescence is a Fundamental Parameter	43
3.3	Pushing Plants through the Flow Cytometer	44
3.3.1	Difficulties with Plants and their Cells	44
3.3.2	Protoplasts are somewhat “Easier” than Intact Cells	45
3.3.3	Going for Organelles	46
3.4	Application of Flow Cytometry in Plants	47
3.4.1	Microspores and Pollen	47
3.4.2	Protoplasts	47
3.4.2.1	Physiological Processes	48
3.4.2.2	Secondary Metabolites	48
3.4.2.3	Gene Expression	48
3.4.2.4	Somatic Hybrids	49
3.4.2.5	DNA Transfection	49
3.4.3	Cell Nuclei	49
3.4.3.1	Ploidy Levels	50
3.4.3.2	Aneuploidy	51
3.4.3.3	B Chromosomes	52
3.4.3.4	Sex Chromosomes	52
3.4.3.5	Cell Cycle and Endopolyploidy	52
3.4.3.6	Reproductive Pathways	53
3.4.3.7	Nuclear Genome Size	54
3.4.3.8	DNA Base Content	55
3.4.3.9	Chromatin Composition	56
3.4.3.10	Sorting of Nuclei	56
3.4.4	Mitotic Chromosomes	57
3.4.5	Chloroplasts	57
3.4.6	Mitochondria	58
3.4.7	Plant Pathogens	58
3.4.8	Aquatic Flow Cytometry	59
3.5	A Flow Cytometer in Every Laboratory?	59
3.6	Conclusions and Future Trends	60
	References	61
4	Nuclear DNA Content Measurement	67
	<i>Johann Greilhuber, Eva M. Ternsch, and João C. M. Loureiro</i>	
	Overview	67
4.1	Introduction	67
4.2	Nuclear DNA Content: Words, Concepts and Symbols	69

4.2.1	Replication–Division Phases	69
4.2.2	Alternation of Nuclear Phases	70
4.2.3	Generative Polyploidy Levels	70
4.2.4	Somatic Polyploidy	71
4.3	Units for Presenting DNA Amounts and their Conversion Factors	72
4.4	Sample Preparation for Flow Cytometric DNA Measurement	74
4.4.1	Selection of the Tissue	74
4.4.2	Reagents and Solutions	75
4.4.2.1	Isolation Buffers and DNA Staining	76
4.5	Standardization	80
4.5.1	Types of Standardization	80
4.5.2	Requirement of Internal Standardization – a Practical Test	82
4.5.3	Choice of the Appropriate Standard Species	83
4.5.3.1	Biological Similarity	83
4.5.3.2	Genome Size	84
4.5.3.3	Nature of the Standard	84
4.5.3.4	Availability	84
4.5.3.5	Cytological Homogeneity	85
4.5.3.6	Accessibility	85
4.5.3.7	Reliability of C-Values	85
4.5.4	Studies on Plant Standards	86
4.5.5	Suggested Standards	88
4.6	Fluorescence Inhibitors and Coatings of Debris	89
4.6.1	What are Fluorescence Inhibitors and Coatings of Debris?	89
4.6.2	Experiments with Tannic Acid	92
4.6.3	A Flow-cytometric Test for Inhibitors	95
4.7	Quality Control and Data Presentation	95
4.8	Future Directions	98
	References	99
5	Flow Cytometry and Ploidy: Applications in Plant Systematics, Ecology and Evolutionary Biology	103
	<i>Jan Suda, Paul Kron, Brian C. Husband, and Pavel Trávníček</i>	
	Overview	103
5.1	Introduction	103
5.2	Practical Considerations	104
5.2.1	Relative DNA Content, Ploidy and Flow Cytometry	104
5.2.2	General Guidelines for Ploidy-level Studies	105
5.2.3	Use of Alternative Tissues	108
5.2.3.1	Preserved or Dormant Tissue	108
5.2.3.2	Pollen	111
5.2.4	Other Considerations/Pitfalls	113
5.2.4.1	Holokinetic Chromosomes (Agmatoploidy)	113
5.2.4.2	DNA Content Variation within Individuals	113

5.3	Applications in Plant Systematics	114
5.3.1	Systematics of Heteroploid Taxa	114
5.3.1.1	Detecting Rare Cytotypes	117
5.3.1.2	Phylogenetic Inference	117
5.3.2	Systematics of Homoploid Taxa	118
5.4	Applications in Plant Ecology and Evolutionary Biology	119
5.4.1	Spatial Patterns of Ploidy Variation	119
5.4.1.1	Invasion Biology	119
5.4.2	Evolutionary Dynamics of Populations with Ploidy Variation	120
5.4.3	Ploidy Level Frequencies at Different Life Stages (Temporal Variation)	121
5.4.4	Reproductive Pathways	122
5.4.4.1	Unreduced Gametes and Polyploidy	122
5.4.4.2	Asexual Seed Production	124
5.4.4.3	Hybridization	124
5.4.5	Trophic Level Interactions and Polyploidy	125
5.5	Future Directions	126
	References	128

6 Reproduction Mode Screening 131

Fritz Matzka

	Overview	131
6.1	Introduction	131
6.2	Analyses of the Mode of Reproduction	134
6.2.1	Traditional Techniques	134
6.2.2	Ploidy Analyses of Progenies Originating from Selfing or Crossing	139
6.2.2.1	Identification of B_{III} , B_{IV} and M_I Individuals after Selfing or Intraploid Pollinations	139
6.2.2.2	Crossing of Parents with Different Ploidy or with Dominant Markers	140
6.2.3	Flow Cytometric Analyses of the Relative DNA Content of Microspores or Male Gametes	141
6.2.4	The Ploidy Variation of Embryo and Endosperm Depending on the Reproductive Mode	142
6.3	A Recent Innovative Method: the Flow Cytometric Seed Screen	142
6.3.1	Advantages and Limitations of the FCSS	143
6.3.2	Applications of the FCSS	146
6.3.2.1	Botanical Studies	146
6.3.2.2	Evolutionary Studies	147
6.3.2.3	Genetical Analyses of Apomixis	147
6.3.3	Methodological Implications	147
6.4	Flow Cytometry with Mature Seeds for other Purposes	149
6.5	Conclusions	150
	References	151

7	Genome Size and its Uses: the Impact of Flow Cytometry	153
	<i>Ilia J. Leitch and Michael D. Bennett</i>	
	Overview	153
7.1	Introduction	153
7.2	Why is Genome Size Important?	154
7.3	What is Known about Genome Size in Plants?	155
7.3.1	Angiosperms	156
7.3.2	Gymnosperms	157
7.3.3	Pteridophytes	158
7.3.4	Bryophytes	158
7.3.5	Algae	158
7.4	The Extent of Genome Size Variation across Plant Taxa	159
7.5	Understanding the Consequences of Genome Size Variation: Ecological and Evolutionary Implications	160
7.5.1	Influence of Genome Size on Developmental Lifestyle and Life Strategy	161
7.5.2	Ecological Implications of Genome Size Variation	163
7.5.3	Implications of Genome Size Variation on Plants' Responses to Environmental Change	166
7.5.3.1	Genome Size and Plant Response to Pollution	166
7.5.3.2	Genome Size and Threat of Extinction	166
7.5.4	Consequences of Genome Size Variation for Survival in a Changing World	167
7.6	Methods of Estimating Genome Size in Plants and the Impact of Flow Cytometry	168
7.6.1	The Development of Flow Cytometry for Genome Size Estimation in Angiosperms	169
7.6.1.1	Choice of Fluorochromes	169
7.6.1.2	Internal Standardization	169
7.6.1.3	The Need for Cytological Data	170
7.6.1.4	Awareness of the Possible Interference of DNA Staining	170
7.6.2	Potential for the Application of Flow Cytometry to Other Plant Groups	171
7.6.2.1	Gymnosperms	171
7.6.2.2	Pteridophytes	172
7.6.2.3	Bryophytes	172
7.7	Recent Developments and the Future of Flow Cytometry in Genome Size Research	172
	References	174
8	DNA Base Composition of Plant Genomes	177
	<i>Armin Meister and Martin Barow</i>	
	Overview	177
8.1	Introduction	177
8.2	Analysis of Base Composition by Flow Cytometry	178

8.2.1	Fluorescence of Base-Specific Dyes: Theoretical Considerations	180
8.2.2	Base Composition of Plant Species Determined by Flow Cytometry and its Relation to Genome Size and Taxonomy	185
8.2.3	Comparison of Flow Cytometric Results with Base Composition Determined by other Physico-Chemical Methods	204
8.2.4	Possible Sources of Error in Determination of Base Composition by Flow Cytometry	205
8.3	Conclusions	211
	References	213

9 Detection and Viability Assessment of Plant Pathogenic Microorganisms using Flow Cytometry 217

Jan H. W. Bergervoet, Jan M. van der Wolf, and Jeroen Peters

Overview 217

9.1	Introduction	217
9.2	Viability Assessment	218
9.2.1	Viability Tests for Spores and Bacteria	219
9.3	Immunodetection	222
9.3.1	Microsphere Immuno Assay	224
9.3.1.1	Detection of Plant Pathogenic Bacteria and Viruses	225
9.3.1.2	Paramagnetic Microsphere Immuno Assay	226
9.4	Conclusions and Future Prospects	227
	References	229

10 Protoplast Analysis using Flow Cytometry and Sorting 231

David W. Galbraith

Overview 231

10.1	Introduction	231
10.1.1	Protoplast Preparation	231
10.1.2	Adaptation of Flow Cytometric Instrumentation for Analysis of Protoplasts	233
10.1.3	Parametric Analyses Available for Protoplasts using Flow Cytometry	234
10.2	Results of Protoplast Analyses using Flow Cytometry and Sorting	237
10.2.1	Protoplast Size	237
10.2.2	Protoplast Light Scattering Properties	238
10.2.3	Protoplast Protein Content	239
10.2.4	Protoplast Viability and Physiology	239
10.2.5	Protoplast Cell Biology	243
10.2.6	Construction of Somatic Hybrids	244
10.2.7	The Cell Cycle	244
10.3	Walled Plant Cells: Special Cases for Flow Analysis and Sorting	246
10.4	Prospects	247
	References	248

11 Flow Cytometry of Chloroplasts 251

Erhard Pfundel and Armin Meister

Overview 251

11.1	Introduction	251
11.1.1	The Chloroplast	252
11.2	Chloroplast Signals in Flow Cytometry	255
11.2.1	Autofluorescence	255
11.2.2	Light Scattering	259
11.3	Progress of Research	259
11.3.1	Chloroplasts from C ₃ Plants	260
11.3.2	Chloroplasts from C ₄ Plants	261
11.4	Conclusion	263
	References	264

12 DNA Flow Cytometry in Non-vascular Plants 267

Hermann Voglmayr

Overview 267

12.1	Introduction	267
12.2	Nuclear DNA Content and Genome Size Analysis	271
12.2.1	General Methodological Considerations	272
12.2.1.1	Isolation and Fixation of Nuclei	272
12.2.1.2	Standardization	274
12.2.1.3	Fluorochromes for Estimation of Nuclear DNA Content	275
12.2.1.4	Secondary Metabolites as DNA Staining Inhibitors	276
12.2.2	DNA Content and Genome Size Studies	276
12.2.2.1	Algae	277
12.2.2.2	Bryophytes	280
12.3	Future Perspectives	283
12.4	Conclusion	284
	References	285

13 Phytoplankton and their Analysis by Flow Cytometry 287

George B. J. Dubelaar, Raffaella Casotti, Glen A. Tarran, and Isabelle C. Biegala

Overview 287

13.1	Introduction	288
13.2	Plankton and their Importance	288
13.2.1	Particles in Surface Water	288
13.2.2	Phytoplankton	289
13.2.3	Distributions in the Aquatic Environment	289
13.3	Considerations for using Flow Cytometry	291
13.3.1	Analytical Approach	291
13.3.2	Limitations and Pitfalls of using Biomedical Instruments	292
13.3.3	Instrument Modification and Specialized Cytometers	293

13.3.4	Sizing and Discrimination of Cells	295
13.3.5	More Information per Particle: From Single Properties to (Silico-) Imaging	297
13.4	Sampling: How, Where and When	301
13.4.1	Sample Preparation	301
13.4.2	Critical Scales and Sampling Frequency	302
13.4.3	Platforms for Aquatic Flow Cytometry	303
13.5	Monitoring Applications	305
13.5.1	Species Screening: Cultures	305
13.5.2	Phytoplankton Species Biodiversity	307
13.5.3	Harmful Algal Blooms	308
13.6	Ecological Applications	308
13.6.1	Population-related Processes	308
13.6.2	Cell-related Processes and Functioning	311
13.6.3	Plankton Abundance Patterns in the Sea: Indicators of Change	314
13.7	Marine Optics and Flow Cytometry	314
13.8	Future Perspectives	315
	References	319

14 Cell Cycle Analysis in Plants 323

Martin Pfosser, Zoltan Magyar, and Laszlo Bögre

	Overview	323
14.1	Introduction	323
14.2	Univariate Cell Cycle Analysis in Plant Cells	325
14.3	BrdUrd Incorporation to Determine Cycling Populations	326
14.4	Cell Cycle Synchronization Methods: Analysis of Cell Cycle Transitions in Cultured Plant Cells	327
14.5	Plant Protoplasts to Study the Cell Cycle	335
14.6	Root Meristems for Cell Cycle Synchronization	335
14.7	Study of Cell Cycle Regulation by using Synchronized Cell Cultures and Flow Cytometry	336
14.8	Cell Cycle and Plant Development	338
14.9	Flow Cytometry of Dissected Tissues in Developmental Time Series	339
14.10	Cell Type-specific Characterization of Nuclear DNA Content by Flow Cytometry	339
14.11	Other Methods and Imaging Technologies to Monitor Cell Cycle Parameters and Cell Division Kinetics in Developing Organs	340
14.12	Concluding Remarks	342
	References	343

15 Endopolyploidy in Plants and its Analysis by Flow Cytometry 349

Martin Barow and Gabriele Jovtchev

	Overview	349
15.1	Introduction	349

15.2	Methods to Analyze Endopolyploidy	351
15.2.1	Microscopy	351
15.2.1.1	Chromosome Counts	351
15.2.1.2	Feulgen Microdensitometry, Fluorescence Microscopy, Image Analysis	352
15.2.2	Flow Cytometry	352
15.2.2.1	Evaluation of Histograms	353
15.2.2.2	Quantification of the Degree of Endopolyploidy	354
15.3	Occurrence of Endopolyploidy	355
15.3.1	Endopolyploidy in Species	356
15.3.2	Endopolyploidy in Ecotypes and Varieties	356
15.3.3	Endopolyploidy in Different Life Strategies	357
15.3.4	Endopolyploidy in Organs	359
15.4	Factors Modifying the Degree of Endopolyploidization	362
15.4.1	Genome Size and Endopolyploidy	362
15.4.2	Environmental Factors	363
15.4.3	Symbionts and Parasites	364
15.4.4	Phytohormones	365
15.5	Dynamics of Endopolyploidization	366
15.6	Endopolyploidy and Plant Breeding	367
15.6.1	Endopolyploidy in Crop Plants	367
15.6.2	<i>In vitro</i> Culture and Plant Regeneration	368
15.7	Conclusions	369
	References	370

16 Chromosome Analysis and Sorting 373

Jaroslav Doležel, Marie Kubaláková, Pavla Suchánková, Pavlína Kovářová, Jan Bartoš, and Hana Šimková

	Overview	373
16.1	Introduction	374
16.2	How Does it Work?	375
16.3	How it All Began	377
16.4	Development of Flow Cytogenetics in Plants	379
16.4.1	Preparation of Suspensions of Intact Chromosomes	379
16.4.1.1	Biological Systems for Chromosome Isolation	379
16.4.1.2	Cell Cycle Synchronization and Metaphase Accumulation	383
16.4.1.3	Preparation of Chromosome Suspensions	383
16.4.2	Chromosome Analysis	385
16.4.2.1	Bivariate Analysis of AT and GC Content	385
16.4.2.2	Fluorescent Labeling of Repetitive DNA	386
16.4.2.3	The Use of Cytogenetic Stocks	386
16.4.2.4	Assignment of Chromosomes to Peaks on Flow Karyotypes	386
16.4.3	Chromosome Sorting	387
16.4.3.1	Estimating the Purity in Sorted Fractions	389
16.4.3.2	Improving the Sort Purity	389

16.4.3.3	Two-step Sorting	389
16.4.3.4	Purities and Sort Rates Achieved	390
16.5	Applications of Flow Cytogenetics	390
16.5.1	Flow Karyotyping	390
16.5.2	Chromosome Sorting	392
16.5.2.1	Physical Mapping and Integration of Genetic and Physical Maps	392
16.5.2.2	Cytogenetic Mapping	392
16.5.2.3	Analysis of Chromosome Structure	396
16.5.2.4	Targeted Isolation of Molecular Markers	396
16.5.2.5	Recombinant DNA Libraries	396
16.6	Conclusions and Future Prospects	398
	References	400

17 Analysis of Plant Gene Expression Using Flow Cytometry and Sorting 405*David W. Galbraith*

Overview 405

17.1	Introduction	405
17.2	Methods, Technologies, and Results	406
17.2.1	Current Methods for Global Analysis of Gene Expression	406
17.2.1.1	Methods Based on Hybridization	407
17.2.1.2	Methods Based on Sequencing	408
17.2.1.3	Emerging Sequencing Technologies	409
17.2.1.4	Other -omics Disciplines and Technologies	410
17.2.2	Using Flow Cytometry to Monitor Gene Expression and Cellular States	411
17.2.2.1	Transgenic Markers Suitable for Flow Cytometry and Sorting	411
17.2.2.2	Subcellular Targeting as a Means for Transgenic Analysis	412
17.2.3	Using Flow Sorting to Measure Gene Expression and Define Cellular States	414
17.2.3.1	Protoplast and Cell Sorting Based on Endogenous Properties	414
17.2.3.2	Protoplast Sorting Based on Transgenic Markers	416
17.2.3.3	Sorting of Nuclei Based on Transgenic Markers	417
17.3	Prospects	418
17.3.1	Combining Flow and Image Cytometry	418
17.3.2	Use of Protoplasts for Confirmatory Studies	418
17.3.3	Analysing Noise in Gene Expression	419
	References	421

18 FLOWER: A Plant DNA Flow Cytometry Database 423*João Loureiro, Jan Suda, Jaroslav Doležel, and Conceição Santos*

Overview 423

18.1	Introduction	423
18.2	Taxonomic Representation in DNA Content Studies	425
18.3	Nuclear Isolation and Staining Buffers	427

18.4	Standardization and Standards	430
18.5	Fluorochromes	433
18.6	Quality Measures of Nuclear DNA Content Analyses	434
18.7	The Uses of DNA Flow Cytometry in Plants	435
18.8	Instrumentation	435
18.9	Where Are the Results Published?	436
18.10	Conclusion	437
	References	438

Index 439