

CONTENTS

1. INTRODUCTION	1
1.1	<i>Some definitions</i> 2
1.2	<i>The development of biometry</i> 3
1.3	<i>The statistical frame of mind</i> 5
2. DATA IN BIOLOGY	8
2.1	<i>Samples and populations</i> 8
2.2	<i>Variables in biology</i> 10
2.3	<i>Accuracy and precision of data</i> 13
2.4	<i>Derived variables</i> 16
2.5	<i>Frequency distributions</i> 19
3. THE HANDLING OF DATA	32
3.1	<i>Desk calculators</i> 33
3.2	<i>Electronic desk calculators</i> 35
3.3	<i>Computers</i> 35
3.4	<i>Efficiency and economy in data processing</i> 38
4. DESCRIPTIVE STATISTICS	40
4.1	<i>The arithmetic mean</i> 41
4.2	<i>Other means</i> 43
4.3	<i>The median</i> 45
4.4	<i>The mode</i> 48
4.5	<i>Simple statistics of dispersion</i> 49
4.6	<i>The standard deviation</i> 50
4.7	<i>Sample statistics and parameters</i> 53
4.8	<i>Coding of data before computation</i> 55
4.9	<i>Machine methods for computing mean and standard deviation</i> 57
4.10	<i>The coefficient of variation</i> 62

5. INTRODUCTION TO PROBABILITY DISTRIBUTIONS:
BINOMIAL AND POISSON 65

- 5.1 *Some simple considerations of probability, random sampling and hypothesis testing* 67
- 5.2 *The binomial distribution* 71
- 5.3 *The Poisson distribution* 83
- 5.4 *Some other discrete probability distributions* 95

6. THE NORMAL PROBABILITY DISTRIBUTION 99

- 6.1 *Frequency distributions of continuous variables* 99
- 6.2 *Derivation of the normal distribution* 102
- 6.3 *Properties of the normal distribution* 105
- 6.4 *Applications of the normal distribution* 110
- 6.5 *Fitting a normal distribution to observed data* 112
- 6.6 *Skewness and kurtosis* 112
- 6.7 *Graphic methods* 119
- 6.8 *Other continuous distributions* 125

7. ESTIMATION AND HYPOTHESIS TESTING 127

- 7.1 *Distribution and variance of means* 128
- 7.2 *Distribution and variance of other statistics* 135
- 7.3 *Introduction to confidence limits* 138
- 7.4 *Student's t-distribution* 143
- 7.5 *Confidence limits based on sample statistics* 145
- 7.6 *The chi-square distribution* 150
- 7.7 *Confidence limits for variances* 153
- 7.8 *Introduction to hypothesis testing* 155
- 7.9 *Tests of simple hypotheses employing the normal and t-distributions* 166
- 7.10 *Testing the hypothesis $H_0: \sigma^2 = \sigma_0^2$* 172

8. INTRODUCTION TO ANALYSIS OF VARIANCE 175

- 8.1 *The variances of samples and their means* 176
- 8.2 *The F-distribution* 181
- 8.3 *The hypothesis $H_0: \sigma_1^2 = \sigma_2^2$* 185
- 8.4 *Heterogeneity among sample means* 186
- 8.5 *Partitioning the total sum of squares and degrees of freedom* 194
- 8.6 *Model I anova* 198
- 8.7 *Model II anova* 201

9. SINGLE CLASSIFICATION ANALYSIS OF VARIANCE 204

- 9.1 *Computational formulas* 205
- 9.2 *General case: unequal n* 206
- 9.3 *Special case: equal n* 214
- 9.4 *Special case: two groups* 216
- 9.5 *Special case: a single specimen compared with a sample* 223
- 9.6 *Comparisons among means: a priori tests* 226
- 9.7 *Comparisons among means: a posteriori tests* 235
- 9.8 *Finding the sample size n required for a test* 246

10. NESTED ANALYSIS OF VARIANCE 253

- 10.1 *Nested anova: design* 253
- 10.2 *Nested anova: computation* 256
- 10.3 *Nested anovas with unequal sample sizes* 274
- 10.4 *The optimal allocation of resources* 287

11. TWO-WAY ANALYSIS OF VARIANCE 299

- 11.1 *Two-way anova: design* 299
- 11.2 *Two-way anova with replication: computation* 301
- 11.3 *Two-way anova: significance testing* 309
- 11.4 *Two-way anova without replication* 320
- 11.5 *Paired comparisons* 328
- 11.6 *Unequal subclass sizes* 333
- 11.7 *Missing values in a randomized block design* 337

12. MULTIWAY ANALYSIS OF VARIANCE 343

- 12.1 *The factorial design* 343
- 12.2 *A three-way factorial anova* 344
- 12.3 *Higher-order factorials* 356
- 12.4 *Other designs* 362
- 12.5 *Anova by computer* 364

13. ASSUMPTIONS OF ANALYSIS OF VARIANCE 367

- 13.1 *A fundamental assumption* 368
- 13.2 *Independence* 368
- 13.3 *Homogeneity of variances* 369
- 13.4 *Normality* 377
- 13.5 *Additivity* 377
- 13.6 *Transformations* 380
- 13.7 *The logarithmic transformation* 382
- 13.8 *The square root transformation* 384

13.9	<i>The arcsine transformation</i>	386
13.10	<i>Nonparametric methods in lieu of a single classification anova</i>	387
13.11	<i>Nonparametric methods in lieu of a two-way anova</i>	397
14. REGRESSION 404		
14.1	<i>Introduction to regression</i>	405
14.2	<i>Models in regression</i>	408
14.3	<i>The basic computations</i>	410
14.4	<i>Machine computation: single Y for each value of X</i>	417
14.5	<i>Tests of significance in regression</i>	420
14.6	<i>More than one value of Y for each value of X</i>	428
14.7	<i>The uses of regression</i>	440
14.8	<i>Estimation of X from Y</i>	446
14.9	<i>Comparison of regression lines</i>	448
14.10	<i>Linear comparisons in anova</i>	458
14.11	<i>Orthogonal polynomials</i>	468
14.12	<i>Transformations in regression</i>	476
14.13	<i>Model II regression</i>	481
14.14	<i>Advanced topics in regression</i>	486
15. CORRELATION 494		
15.1	<i>Correlation and regression</i>	495
15.2	<i>The product-moment correlation coefficient</i>	498
15.3	<i>Computation of the product-moment correlation coefficient</i>	508
15.4	<i>Significance tests in correlation</i>	515
15.5	<i>Applications of correlation</i>	523
15.6	<i>Principal axes and confidence regions</i>	526
15.7	<i>Nonparametric tests for association</i>	532
15.8	<i>Advanced topics in correlation</i>	539
16. ANALYSIS OF FREQUENCIES 549		
16.1	<i>Tests for goodness of fit: introduction</i>	550
16.2	<i>Single classification goodness of fit tests</i>	560
16.3	<i>Replicated tests of goodness of fit</i>	575
16.4	<i>Tests of independence: two-way tables</i>	585
16.5	<i>Tests of independence: multiway tables</i>	601
16.6	<i>Testing equality of two percentages</i>	607
16.7	<i>Randomized blocks for frequency data</i>	610

17. MISCELLANEOUS METHODS 621

- 17.1 *Combining probabilities from tests of significance* 621
- 17.2 *Tests for randomness: runs tests* 624
- 17.3 *Randomization tests* 629
- 17.4 *The future of biometry: data analysis* 637

APPENDIXES 643

- A1 Mathematical appendix* 643
- A2 Operation of desk calculators* 656
- A3 Statistical computer programs* 667
- A4 Tabular guide to statistical methods* 743

BIBLIOGRAPHY 751

INDEX 759