

CONTENTS

1 The Genetic Code

Equivalence of Gene and Protein	3
definition of the gene	3
nucleic acids as the genetic material	5
colinearity of gene and protein	10
Nature of the Code for Amino Acids	13
overlapping and non-overlapping codes	13
fixed reading frame of the code	16
assignment of codons to amino acids	19
Nonsense Codons for Termination	26
suppression of nonsense and missense mutations	26
nucleotide sequences of nonsense codons	28
Evolution of the Code	30
universal nature of the code	30
stereochemical interactions in the primitive code	33
forces of selection on the code	34

2 Synthesis of the Polypeptide Chain

Components of the Apparatus for Protein Synthesis	38
sequential synthesis of proteins	38
messenger RNA as the template	40
activating amino acids with transfer RNA	43
the polyribosome complex	46
Addition of Amino Acids to the Polypeptide Chain	49
ribosomal sites for transfer RNA	49
formation of the transfer complex with aminoacyl-tRNA	53
binding aminoacyl-tRNA to the ribosome	62
peptide bond synthesis	65

Movement of the Ribosome along the Message	67
role of the G factor translocase	67
the GTP hydrolysis site of the ribosome	70
3 Punctuation in the Message	
Signals for Initiation	79
incorporation of formyl-methionine into proteins	79
recognition of AUG by fmet-tRNA _f	80
initiation sequences of RNA phages	86
Formation of the Initiation Complex	89
role of ribosome sites in initiation	89
binding of fmet-tRNA _f to the initiation complex	95
ribosome binding to the messenger	101
distribution of ribosomes in bacterial cells	104
the ribosome subunit cycle	108
Termination of the Polypeptide Chain	111
factors for release of polypeptide from tRNA	111
release reaction on the ribosome	114
utilization of nonsense codons	114
4 The Ribosome	
Components of the Ribosome Particle	117
folded structure of the nucleoprotein chain	117
major RNAs of bacterial ribosomes	119
sequence and synthesis of 5S ribosomal RNA	120
Synthesis and Assembly of Ribosome Subunits	122
maturation of eucaryotic ribosomal RNA	122
organization of bacterial genes for ribosomal RNA	125
synthesis of ribosomal RNA precursors	127
isolation of precursor particles	128
mutants in ribosome assembly	131
Topology of Ribosome Subunits	135
proteins of <i>E.coli</i> ribosomes	135
organization of genes for ribosomal proteins	137
dissociation and assembly of 30S subunits in vitro	139
reconstitution of 50S subunits in vitro	142
addition of proteins to precursor particles	143
organization of proteins in the 30S subunit	147
association of proteins with 16S rRNA	150
organization of the 50S subunit	153

Functional Sites in Ribosome Subunits	153
subribosomal particles of the 50S subunit	153
subribosomal particles of the 30S subunit	157
influence of streptomycin on the ribosome	159
ribosomal mistranslation	162
mutation of the accuracy of the ribosome	164

5 Transfer RNA

Structure of tRNA	169
sequence determination of RNA	169
clover leaf model for secondary structure	170
synthesis and maturation of the precursor	176
alternate tertiary conformations of tRNA	179
models for tertiary folding of the clover leaf	182
Functions of the Transfer Molecule	187
modification of function in vitro	187
mutants of su_3 tyrosine tRNA	191
interaction of tRNA with synthetase	194
the synthetase charging reaction	198
Accuracy of Translation	202
codon-anticodon recognition	202
suppression of amber and ochre mutations	211
suppressor mutations in the anticodon	215
suppression of UGA codons	219
recognition of natural termination signals by mutant tRNAs	220
missense suppression by mutant tRNAs	221
suppression of frameshift mutations	223

CONTROL OF TRANSCRIPTION

6 Transcription of Phage Genomes

Synthesis of RNA by RNA Polymerase	229
transcription of duplex DNA templates	229
separation of RNA polymerase into core enzyme and sigma factor	235
release of sigma factor by core enzyme at initiation	237
Binding Reaction and Initiation	241
restriction of strand transcription by sigma	241
binding of RNA polymerase to DNA	244
initiation of RNA synthesis	249

Signals for Termination of Transcription	251
termination sites recognised by rho factor	252
termination in different ionic environments	255
interaction of rho factor with RNA polymerase	260
Changes in RNA polymerase during Phage Development	262
switches in early transcription of phage T4	262
changes in template and RNA polymerase during late T4 development	266
transcription of delayed early genes of phage λ	268
7 The Lactose Operon	
Organization of Gene Clusters	272
induction and repression	272
coordinate activity of clustered genes	273
structural and regulator genes	275
transcription of the structural genes	280
Interaction of Repressor and Operator	285
promotor for the structural genes	285
sequence of the operator	288
isolation of repressor protein	290
binding of repressor to operator DNA	291
repression of transcription	297
synthesis and structure of the repressor	299
Induction of Transcription at the Promotor	302
glucose repression by cyclic AMP	302
cyclic AMP control protein	304
isolation of the lactose genes	307
8 Operon Control Circuits	
Bacterial Operons	310
positive and negative control systems	310
the histidine operon	316
positive-negative control of the arabinose operon	323
dual control of the galactose operon	328
control of dispersed genes in the arginine system	333
complex gene clusters	338
evolution of control systems	343
Development of Phage λ	344
repression of phage DNA expression	344
isolation and function of repressor protein	347
structure of the operator/promotor sites	350
control of synthesis of cI repressor	357
sequence of lytic development	364

Control of Stable RNA Synthesis	367
synthesis of ribosomal RNA	367
stringent/relaxed control of transcription	369
accumulation of guanosine tetraphosphate in stringent cells	372

9 Expression of the Operon

Kinetics of Synthesis of the Tryptophan Enzymes	378
transcription and translation of mRNA	378
degradation of messenger RNA	384
internal initiation of transcription and translation	387
Polarity of Translation	390
influence of nonsense mutations on operon function	390
role of reinitiation sites in polarity	393
ribosome movement on polycistronic messengers	396
Coupling of Transcription and Translation	400
transcription past nonsense mutations	400
suppression of polarity	404
rho-dependent termination in bacterial operons	406

REPRODUCTION OF DNA

10 Replication of the Bacterial Genome

Movement of the Growing Points	411
components of the replication apparatus	411
semi-conservative separation of DNA strands	412
sequential movement of the replicating fork	414
bidirectional replication from a fixed origin	416
DNA Replication in the Bacterial Cell	425
association of DNA with the cell membrane	425
unwinding the double helix	429
accuracy of replication of DNA	436
discontinuous synthesis of DNA	440
covalent linkage of Okazaki fragments	446
initiation of DNA synthesis with RNA primers	450
rate of replication of the bacterial chromosome	458
Enzyme Systems for DNA Synthesis	459
Kornberg DNA polymerase I	459
membrane systems for DNA synthesis	460
DNA synthesis by DNA polymerase II	462
temperature sensitive mutants in replication	464
replication by DNA polymerase III	466

11 Modification and Repair of DNA

Host Modification and Restriction	471
enzymes of DNA metabolism	471
methylation of the bacterial chromosome	472
genes for host modification and restriction in <i>E.coli</i> K and B	475
chromosomal and episomal systems of <i>E.coli</i> 15	480
two host specificity systems of <i>Hemophilus influenzae</i>	482
restriction and modification enzymes of <i>E.coli</i>	483
mutation in recognition sites of phage DNA	487
symmetrical sequences of recognition sites	490
Excision and Repair of Mutant DNA Sequences	495
influence of ultraviolet irradiation	495
correction systems of <i>E.coli</i>	496
photoreactivation of thymine dimers	498
excision and repair of damaged DNA in <i>E.coli</i>	498
enzymes for excision-repair in <i>M. luteus</i>	501
phage coded excision enzymes	504
excision-repair in eucaryotic cells	504
Recombination-Repair Systems of <i>E.coli</i>	506
post replication repair of DNA containing thymine dimers	506
enzymes of the <i>rec</i> system for recombination and repair	511
induction of mutations by ultraviolet light	514
catalytic activities of DNA polymerase I	516
role of the <i>pola</i> locus in repair	520

12 Recombination Between DNA Duplexes

Reciprocal Exchange of Genetic Information by Crossing Over	524
physical exchange of genetic material	524
formation of hybrid DNA	527
Recombination without Crossing Over	530
gene conversion in fungi	530
recombination between alleles	534
gradients of gene conversion	536
Recombination Intermediates of Phage DNA	542
heterozygosis in phage T4	542
recombination activities in T4 infected cells	544
redundant joint molecules of phage λ	547
correlation between recombination and repair activities	548

13 The Cell Division Cycle

Initiation of New Cycles of Replication	550
control of the replicon	550
synthesis of initiator proteins	551
initiation mutants in membrane proteins	555
Links between Replication Cycles and Cell Division	556
DNA synthesis during the cell cycle	556
titration of cell mass	563
growth of the unit cell	568
trigger for cell division	571
References	577
Index	635

Synthesis of Protein