

CONTENTS

	Page
Chapter 1 PROPERTIES OF FLUIDS	1
Fluid mechanics and hydraulics. Definition of a fluid. American engineering system of units. Specific weight. Mass density. Specific gravity. Viscosity. Vapor pressure. Surface tension. Capillarity. Fluid pressure. Unit pressure. Difference in pressure. Pressure variations in a compressible fluid. Pressure head h . Bulk modulus of elasticity. Compression of gases. Isothermal conditions. Adiabatic or Isentropic conditions. Pressure disturbances.	
Chapter 2 HYDROSTATIC FORCE ON SURFACES.....	22
Force exerted on plane area. Line of action of force. Horizontal and vertical components of force. Hoop tension. Longitudinal stress.	
Chapter 3 BUOYANCY AND FLOTATION	36
Archimedes' Principle. Stability of submerged and floating bodies.	
Chapter 4 TRANSLATION AND ROTATION OF LIQUID MASSES.....	42
Horizontal motion. Vertical motion. Rotation of open vessels. Rotation of closed vessels.	
Chapter 5 DIMENSIONAL ANALYSIS AND HYDRAULIC SIMILITUDE	50
Dimensional analysis. Buckingham Pi theorem. Hydraulic models. Geometric similitude. Kinematic similitude. Dynamic similitude. Inertia force ratio. Inertia-pressure force ratio. Inertia-viscous force ratio. Inertia-gravity force ratio. Inertia-elasticity force ratio. Inertia-surface tension ratio. Time ratios.	
Chapter 6 FUNDAMENTALS OF FLUID FLOW.....	70
Three significant concepts of fluid flow. Fluid flow. Steady flow. Uniform flow. Streamlines. Streamtubes. Equation of continuity. Flownets. Energy equation. Velocity head and kinetic-energy correction factor. Application of the Bernoulli theorem. Energy line. Hydraulic grade line. Power.	

CONTENTS

	Page
Chapter 7 FLUID FLOW IN PIPES.....	96
Energy principle. Laminar flow. Critical velocity. Reynolds number. Turbulent flow. Shearing stress at pipe wall. Velocity distribution. Loss of head for laminar flow. Darcy-Weisbach formula. Friction factor f . Other losses of head.	
Chapter 8 EQUIVALENT, COMPOUND, LOOPING AND BRANCHING PIPES	115
Piping systems and the Hardy Cross method. Equivalent pipes. Compound, looping and branching pipes. Methods of solution. Hazen-Williams formula.	
Chapter 9 MEASUREMENT OF FLOW OF FLUIDS.....	133
Introduction to velocity and quantity measurements. Pitot tube. Coefficient of discharge. Coefficient of velocity. Coefficient of contraction. Lost head. Weirs. Weir formulas. Dams as weirs. Time to empty tanks. Time to establish flow.	
Chapter 10 FLOW IN OPEN CHANNELS.....	160
Open channel. Steady, uniform flow. Non-uniform or varied flow. Laminar flow. Chezy formula. Formulas for coefficient C . Discharge Q by Manning formula. Lost head. Vertical distribution of velocity. Specific energy. Critical depth. Maximum unit flow. Critical flow in non-rectangular channels. Non-uniform flow and backwater curves. Broad-crested weirs. Hydraulic jump.	
Chapter 11 FORCES DEVELOPED BY MOVING FLUIDS.....	192
Impulse-Momentum principle. Momentum correction factor. Drag. Lift. Total drag force. Drag coefficients. Lift coefficients. Mach number. Boundary layer theory. Formulas for flat plates. Water hammer. Supersonic speeds.	
Chapter 12 FLUID MACHINERY	225
Fluid machinery. Rotating channels. Speed factors. Speed, discharge and power relations. Unit speed. Unit discharge. Unit power. Specific speed. Efficiency. Cavitation. Propeller propulsion and coefficients.	

CONTENTS

APPENDIX

	Page
Table 1. Properties of air, water, and some gases.....	246
2. Kinematic viscosity and specific gravity of certain liquids	247
3. Frictional factors f for water only.....	248
4. Typical loss of head items.....	249
5. Values of K for contractions and enlargements.....	250
6. Some values of Hazen-Williams coefficient C_1	250
7. Discharge coefficients of circular orifices	251
8. Expansion factors Y for compressible flow.....	252
9. Average values of Manning's n and Bazin's m	252
10. Values of Kutter's C	253
11. Values of discharge factor K for trapezoidal channels	254
12. Values of discharge factor K' for trapezoidal channels	255
13. Areas of circles.....	256
14. Weights and dimensions of cast iron pipe.....	256

DIAGRAMS

Diagram A-1. Moody diagram for frictional factors f	257
A-2. Modified Moody diagram for frictional factors f (direct solution for flow Q)	258
B. Nomographic chart for Hazen-Williams formula ($C_1 = 100$) ..	259
C. Coefficients for pipe orifices.....	260
D. Coefficients for flow nozzles	261
E. Coefficients for Venturi meters	262
F. Coefficients of drag.....	263
G. Coefficients of drag for smooth flat plates.....	264
H. Coefficients of drag at supersonic velocities	265

INDEX.....	267
------------	-----