

Contents

PART I CELL STRUCTURE AND GENETICS

1	Introduction: The Genetic Apparatus	3
	The Eucaryotic Chromosome, 4	
	The Genetic Material, 7	
2	The Cell Skeleton: Microtubule Assemblies	11
	Occurrence of Microtubules, 12	
	Microtubule Ultrastructure, 13	
	Components of Tubulin, 18	
	Polymerization of Tubulin, 20	
	Initiation of Microtubule Assembly, 22	
	Microtubule Elongation, 28	
	Interactions of Microtubules with Mitotic Inhibitors, 30	
	Binding of Colchicine to Tubulin, 33	
	Formation of Paracrystals with Vinblastine, 35	
	Poisoning Action of Alkaloids, 36	
	Cytoplasmic Network of Microtubules, 38	
3	The Cell Skeleton: The Contractile Network	43
	Protein Components of Muscle, 44	
	Occurrence of Cytoplasmic Contractile Proteins, 48	
	Presence of Actin in Cytoplasmic Microfilaments, 51	
	Network of Contractile Proteins, 57	
	Stress Fibers and Cell Motility, 60	
	Microfilaments and Microtubules in the Cell Skeleton, 63	
	Disruption of Microfilaments by Cytochalasin B, 64	
	Intermediate Filaments, 67	
	Detergent Resistant Cytoskeleton, 69	
4	Chromosome Segregation: Mitosis	71
	The Mitotic Apparatus, 71	
	Development of the Centromere, 74	

Distribution of Spindle Fibers, 78	
Dynamic Equilibrium of Microtubules and Tubulin, 82	
Microtubules and Actin Filaments in Chromosome Movement, 85	
Structure of the Centriole, 90	
Microtubule Organizing Centers, 95	
Cytokinesis, 100	
5 Chromosome Segregation: Meiosis	102
Formation of the Synaptonemal Complex, 104	
Reconstruction of the Set of Synaptonemal Complexes, 109	
Crossing Over and Chiasmata, 116	
Genetics of Meiosis, 124	
Meiotic Mutants of <i>Drosophila</i> , 125	
Relationship of Recombination and Nondisjunction, 133	
Mitotic Recombination, 139	
6 Somatic Cell Mutants	142
Somatic Cell Lines, 143	
Mutation and Epigenetic Variation, 146	
Isolation of Auxotrophic Mutants, 147	
Selection of Drug-Resistant Mutants, 150	
Isolation of Temperature-Sensitive Mutants, 156	
Measurement of Mutation Rates, 158	
Mutation Rates in Somatic Cells, 162	
Mutant and Gene Dosage in Cells of Different Ploidies, 166	
Mutation Rates in Homozygous and Heterozygous Cells, 172	
Identification of the Structural Gene for HGPRT, 174	
Isolation of Mutants Deficient in HGPRT Activity, 176	
Mutations in the Structural Gene for HGPRT, 179	
Characterization of Structural and Regulator Gene Mutants, 182	
7 The Cell Division Cycle	189
Methods for Synchronizing Cell Division, 192	
Protein Synthesis and Cell Growth During Interphase, 195	
Control of Entry into S Phase, 198	
Quiescent and Proliferating Cultures, 205	
Synthesis of Proteins During S Phase, 210	
8 Hybrid Cells: Nucleus and Cytoplasm	213
Reciprocity of Nucleocytoplasmic Interactions, 214	
Nucleocytoplasmic Interactions in <i>Acetabularia</i> , 215	
Transplantation of <i>Xenopus</i> Nuclei, 216	
Reactivation of Transplanted Nuclei, 220	

Fusion of Somatic Cells, 225	225
Reactivation of Inert Nuclei, 227	227
Molecular Reconstruction of Reactivating Nuclei, 232	232
Formation of Cytoplasts and Karyoplasts, 236	236
9 Hybrid Cells: Chromosomes	242
Chromosome Loss in Heterospecific Hybrids, 243	243
Genetic Mapping in Cell Hybrids, 244	244
Mapping of the Human X Chromosome by Fragmentation, 252	252
X Chromosome Mapping by Translocation, 256	256
Expression of Differentiated Functions, 259	259
Division Cycles in Homokaryons, 266	266
Survival of Prematurely Condensed Chromosomes, 268	268
Gene Transfer with Isolated Chromosomes, 273	273
Transfection with Purified DNA, 278	278
PART 2 ORGANIZATION OF THE GENETIC APPARATUS	
10 Introduction: Chromosomes and Chromatin	283
Continuity of DNA in the Chromosome, 285	285
Semiconservative Replication of the Chromosome, 289	289
Sister Chromatid Exchange, 292	292
11 Chromatin Components: Histones	299
Separation of Histones, 300	300
Sequences of the Arginine-Rich Histones, 303	303
Sequences of the Slightly Lysine-Rich Histones, 306	306
Microheterogeneity of Lysine-Rich Histones, 309	309
Sequence of Avian H5, 311	311
Evolution of Histone Sequences, 312	312
Modification of Histones, 317	317
12 Chromatin Components: Nonhistone Proteins	322
Diversity of Nonhistone Proteins, 323	323
Identification of Nonhistone Proteins, 325	325
HMG Proteins of Calf Thymus, 327	327
DNA Binding Proteins, 328	328
The A24 Semihistone, 329	329
Conclusions: Functions of Nonhistone Proteins, 330	330
13 The Nucleosome: Structure of the Particle	332
Repeating Length of DNA in Chromatin Subunits, 333	333
Visualization of Individual Particles, 339	339

Histone Octamer of the Nucleosome, 345	
Variations in the Repeat Length of DNA, 349	
Structure of the Core Particle, 353	
Location of H1 between Cores, 356	
Exposure of DNA on the Nucleosome Surface, 359	
Periodicity of DNA Organization, 366	
Phasing of Nucleosomes, 374	
Interactions between Histones and with DNA, 381	
Shape of the Histone Octamer and DNA Shell, 389	
14 The Nucleosome: Organization in Chromatin	394
Replication of Chromatin, 396	
Assembly of the Nucleosome, 400	
Chromatin under Transcription, 404	
Active and Inactive Nucleosomes, 408	
Constitution of Active Chromatin, 413	
Coiling of the Nucleosome Thread, 416	
Chromosome Integrity, 420	
15 Euchromatin and Heterochromatin	428
Chromosome Banding, 430	
Structure of the Bands, 435	
Mechanism of Banding, 437	
Inactivity of Facultative Heterochromatin, 440	
Time of X Inactivation, 444	
Position Effect Variegation, 447	
Formation of Facultative Heterochromatin, 450	
16 Specialized Chromosomes: Chromomere Structure	455
Lampbrush Chromosomes, 456	
Polytene Chromosome Bands, 460	
Replication of Polytene Chromosomes, 463	
Puffing of Bands, 467	
Puffs and Gene Products, 470	
Transcription at Puffs, 473	
PART 3 ORGANIZATION OF THE EUKARYOTIC GENOME	
17 Introduction: Genes and Gene Number	479
Genes and Complementation Groups, 480	
The C Value Paradox, 488	
Gene Number in <i>Drosophila</i> , 492	
Essential and Nonessential Genes, 499	

18 DNA Sequence Organization: Nonrepetitive and Repetitive DNA	503
Denaturation and Renaturation of DNA, 504	
Complexity of Nonrepetitive DNA, 508	
Kinetics of DNA Reassociation, 514	
Families of Repetitive Sequences, 517	
Interspersion of Repetitive and Nonrepetitive Sequences, 523	
19 DNA Sequence Organization: Inverted and Tandem Repeats	531
Distribution of Inverted Repeats, 532	
Fractionation of DNA by Buoyant Density, 538	
Chromosomal Location of Satellite DNA, 541	
Satellite DNAs of Arthropods, 545	
Mammalian Satellite DNAs, 550	
Evolution of Tandem Repeats, 559	
20 DNA Replication	570
Organization of Replicons, 571	
Regional Patterns of Replication, 576	
The Replication Apparatus, 578	
21 Organelle Genomes	583
Chloroplast and Mitochondrial DNA, 585	
Inheritance of the Chlamydomonas Chloroplast, 591	
Linkage Map of Chlamydomonas Chloroplast DNA, 595	
The Petite Mutation of Yeast, 603	
Recombination in Yeast Mitochondrial DNA, 608	
Recombination Mapping with Petites, 611	
Complementation Mapping of <i>mit</i> ⁻ Mutations, 615	
Protein Synthesis in Organelles, 617	
Organelle and Nuclear Genes and Products, 625	
Replication of Organelle DNA, 631	
PART 4 EXPRESSION OF GENETIC INFORMATION	
22 Introduction: The Transcription Apparatus	641
Functions of RNA Polymerases, 644	
RNA Synthesis in the Cell Cycle, 649	
23 Structure of Messenger RNA	653
Recognition of mRNA and mRNP in Polysomes, 654	
Poly(A) at the 3' Terminus, 656	

Poly(A) ⁺ and Poly(A) ⁻ mRNA, 660	81
Messenger Ribonucleoprotein Particles, 663	81
Methyl Capping at the 5' Terminus, 668	81
Capping and the Initiation of Transcription, 675	81
Characterization of Individual Messengers, 683	81
Products of Messenger Translation, 687	81
Stability of Messenger RNA, 690	81
24 Complexity of mRNA Populations	694
Reiteration Frequencies of Structural Genes, 697	694
Identification of Individual Genes, 705	694
Number of Expressed Structural Genes, 708	694
Abundance Classes of mRNA, 713	694
Overlaps between Messenger Populations, 719	694
25 Heterogeneous Nuclear RNA	728
Fate of Rapidly Labeled hnRNA, 730	728
Size and Secondary Structure of hnRNA, 732	728
Nuclear Polyadenylation and hnRNA Turnover, 736	728
Capping and Internal Methylation, 744	728
Sequence Complexity of hnRNA, 746	728
Sequence Relationship of mRNA and hnRNA, 751	728
Control of RNA Processing, 756	728
Small Nuclear RNA, 758	728
26 Interrupted Genes and RNA Splicing	761
Restriction Mapping of DNA, 762	761
Nucleic Acid Cloning, 763	761
Isolation of Eucaryotic Genes, 771	761
Bacterial Translation of Eucaryotic Genes, 777	761
DNA Sequence Determination, 785	761
Occurrence of Intervening Sequences: Globin Genes, 790	761
Duplicate Insulin Genes, 796	761
Ovalbumin and its Relatives, 797	761
Occurrence of Intervening Sequences: Higher and Lower Eucaryotes, 799	761
Genetics of Mosaic Genes, 807	761
Evolution of Interrupted Genes, 811	761
Sequences of Splicing Junctions, 815	761
Splicing of Nuclear Transcripts, 824	761
Alternative Splicing Pathways in Adenovirus, 832	761
Variable Splicing of SV40 Transcripts, 839	761
Diversity of Immunoglobulin Genes, 847	761

Rearrangement of V and C Genes, 853	
Mobile Elements in the Genome, 861	
Modification of DNA, 862	
27 Ribosomal Gene Clusters	865
Synthesis of Ribosomal RNA, 866	
Maturation of rRNA Sequences, 873	
Repetition of Ribosomal Genes, 875	
Organization of Transcription Units, 878	
Structure of Nontranscribed Spacers, 885	
Multiplication of Ribosomal Genes, 890	
Structure of 5S Gene Clusters, 896	
Evolution of Tandem Gene Clusters, 903	
28 Gene Families	907
The Histone Gene Cluster: Organization, 908	
The Histone Gene Cluster: Expression, 915	
Globin Gene Relationships: Gene Numbers, 918	
Globin Gene Relationships: Mutant Genes, 924	
Drosophila Heat Shock Genes, 931	
Chromatin in vitro: Transcription, 935	
Chromatin in vitro: Fractionation, 944	
Models for Gene Regulation, 949	
Appendix 1 DNA Content of Haploid Genomes	958
Appendix 2 Determination of Genome Size by Reassociation of Nonrepetitive DNA	962
Appendix 3 Sequence Components of Eucaryotic Genomes	965
References	968
Index	1139