

CHAPTER 1	DNA AS A STORE OF INFORMATION	1
CHAPTER 2	GENES ARE CARRIED ON CHROMOSOMES	25
CHAPTER 3	DNA IS THE GENETIC MATERIAL	3
CHAPTER 4	THE DISCOVERY OF DNA	12
CHAPTER 5	THE TOPOLOGY OF NUCLEIC ACIDS	52
CHAPTER 6	THE POLYMERASE FACTORY	5
CHAPTER 7	TRANSLATION	9
CHAPTER 8	THE RIBOSOME FACTORY	17
CHAPTER 9	THE MESSANGER RNA TEMPLE	20
CHAPTER 10	THE LYtic CASCADE AND LYSOGENIC REPRESSION	44
CHAPTER 11	THE PROTEIN WORKSHOP	45
CHAPTER 12	THE SECRETORY PATHWAY	48
CHAPTER 13	THE RATE OF MUTATION	50
CHAPTER 14	ISOLATING THE GENE	67
CHAPTER 15	REARRANGING GENES AND PROTEIN ASSEMBLIES	68
CHAPTER 16	THE SCORE OF THE PARADIGM	70

CONTENTS

PART 1

DNA AS A STORE OF INFORMATION

CHAPTER 1

CHAPTER 1	DNA IS THE GENETIC MATERIAL	3
CHAPTER 2	THE DISCOVERY OF DNA	12
CHAPTER 3	DNA IS THE GENETIC MATERIAL	3
CHAPTER 4	THE DISCOVERY OF DNA	12
CHAPTER 5	DNA IS THE GENETIC MATERIAL	3
CHAPTER 6	THE POLYMERASE FACTORY	5
CHAPTER 7	TRANSLATION	9
CHAPTER 8	THE RIBOSOME FACTORY	17
CHAPTER 9	THE MESSANGER RNA TEMPLE	20
CHAPTER 10	THE LYtic CASCADE AND LYSOGENIC REPRESSION	44
CHAPTER 11	THE PROTEIN WORKSHOP	45
CHAPTER 12	THE SECRETORY PATHWAY	48
CHAPTER 13	THE RATE OF MUTATION	50
CHAPTER 14	ISOLATING THE GENE	67
CHAPTER 15	REARRANGING GENES AND PROTEIN ASSEMBLIES	68
CHAPTER 16	THE SCORE OF THE PARADIGM	70

CHAPTER 2

GENES ARE CARRIED ON CHROMOSOMES

CHAPTER 2	GENES ARE CARRIED ON CHROMOSOMES	25
CHAPTER 3	DISCOVERY OF THE GENE	26
CHAPTER 4	THE ROLE OF CHROMOSOMES IN HEREDITY	28
CHAPTER 5	EACH GENE LIES ON A SPECIFIC CHROMOSOME	33
CHAPTER 6	GENES LIE IN A LINEAR ARRAY	33
CHAPTER 7	THE GENETIC MAP IS CONTINUOUS	38
CHAPTER 8	ONE GENE—ONE PROTEIN	38
CHAPTER 9	A DETAILED DEFINITION: THE CISTRON	40
CHAPTER 10	A NOTE ABOUT TERMINOLOGY	42

CHAPTER 1	DISCOVERY OF THE GENE	1
CHAPTER 2	THE ROLE OF CHROMOSOMES IN HEREDITY	2
CHAPTER 3	EACH GENE LIES ON A SPECIFIC CHROMOSOME	3
CHAPTER 4	GENES LIE IN A LINEAR ARRAY	4
CHAPTER 5	THE GENETIC MAP IS CONTINUOUS	5
CHAPTER 6	ONE GENE—ONE PROTEIN	6
CHAPTER 7	A DETAILED DEFINITION: THE CISTRON	7
CHAPTER 8	A NOTE ABOUT TERMINOLOGY	8
CHAPTER 9	DISCOVERY OF THE GENE	9
CHAPTER 10	THE ROLE OF CHROMOSOMES IN HEREDITY	10
CHAPTER 11	EACH GENE LIES ON A SPECIFIC CHROMOSOME	11
CHAPTER 12	GENES LIE IN A LINEAR ARRAY	12
CHAPTER 13	THE GENETIC MAP IS CONTINUOUS	13
CHAPTER 14	ONE GENE—ONE PROTEIN	14
CHAPTER 15	A DETAILED DEFINITION: THE CISTRON	15
CHAPTER 16	A NOTE ABOUT TERMINOLOGY	16

CHAPTER 3

MUTATIONS CHANGE THE SEQUENCE OF DNA

CHAPTER 3	MUTATIONS CHANGE THE SEQUENCE OF DNA	43
CHAPTER 4	THE GENETIC CODE IS READ IN TRIPLETS	44
CHAPTER 5	POINT MUTATIONS CHANGE SINGLE BASE PAIRS	45
CHAPTER 6	MUTATIONS ARE CONCENTRATED AT HOTSPOTS	48
CHAPTER 7	THE RATE OF MUTATION	50

CHAPTER 4

THE TOPOLOGY OF NUCLEIC ACIDS

CHAPTER 4	THE TOPOLOGY OF NUCLEIC ACIDS	52
CHAPTER 5	SINGLE STRANDED NUCLEIC ACIDS MAY HAVE SECONDARY STRUCTURE	52
CHAPTER 6	INVERTED REPEATS AND SECONDARY STRUCTURE	54
CHAPTER 7	DUPLEX DNA HAS ALTERNATIVE DOUBLE-HELICAL STRUCTURES	57
CHAPTER 8	A LEFT-HANDED FORM OF DNA	59
CHAPTER 9	CLOSED DNA CAN BE SUPERCOILED	60
CHAPTER 10	SUPERCOILING INFLUENCES THE STRUCTURE OF THE DOUBLE HELIX	62
CHAPTER 11	DNA CAN BE DENATURED AND RENATURED	63
CHAPTER 12	NUCLEIC ACIDS HYBRIDIZE BY BASE PAIRING	65

CHAPTER 5

ISOLATING THE GENE

CHAPTER 5	ISOLATING THE GENE	67
CHAPTER 6	RESTRICTION ENZYMES CLEAVE DNA INTO SPECIFIC FRAGMENTS	68
CHAPTER 7	CONSTRUCTING A RESTRICTION MAP FROM THE FRAGMENTS	70
CHAPTER 8	RESTRICTION SITES CAN BE USED AS GENETIC MARKERS	73

OBTAINING THE SEQUENCE OF DNA	76
PROKARYOTIC GENES AND PROTEINS ARE	79
COLINEAR	81
EUKARYOTIC GENES CAN BE INTERRUPTED	82
SOME DNA SEQUENCES CODE FOR MORE THAN ONE	83
PROTEIN	
THE SCOPE OF THE PARADIGM	

PART 2 TURNING GENES INTO PROTEINS

CHAPTER 6

BREAKING THE GENETIC CODE

PROTEINS ARE SYNTHESIZED IN ONE DIRECTION	87
THE SEARCH FOR MESSENGER RNA	88
TRANSFER RNA IS THE ADAPTOR	88
RBOSOMES TRAVEL IN CONVOY	89
MOST CODONS REPRESENT AMINO ACIDS	91
IS THE CODE UNIVERSAL?	94

CHAPTER 9

THE RIBOSOME TRANSLATION FACTORY

RBOSOMES ARE COMPACT RIBONUCLEOPROTEIN	136
PARTICLES	137
RBOSOMAL PROTEINS INTERACT WITH tRNA	139
RECONSTITUTION <i>IN VITRO</i> MIMICS ASSEMBLY <i>IN</i>	
VIVO	143
SUBUNIT ASSEMBLY IS LINKED TO TOPOLOGY	144
ALL RBOSOMAL COMPONENTS CAN BE MUTATED	145
RBOSOMES HAVE SEVERAL ACTIVE CENTERS	147
THE ACCURACY OF TRANSLATION	149

CHAPTER 7

THE ASSEMBLY LINE FOR PROTEIN SYNTHESIS

THE RIBOSOMAL SITES OF ACTION	99
STARTING THE POLYPEPTIDE CHAIN	99
INITIATION NEEDS 30S SUBUNITS AND ACCESSORY	100
FACTORS	102
THE BRIEF FREEDOM OF 30S SUBUNITS IS	
CONTROLLED BY IF3	104
IF2 PICKS OUT THE INITIATOR tRNA	105
EUKARYOTIC INITIATION INVOLVES MANY FACTORS	106
ELONGATION: T FACTOR BRINGS AMINOACYL-tRNA	
INTO THE A SITE	108
TRANSLOCATION MOVES THE RIBOSOME	110
FINISHING OFF: THREE CODONS TERMINATE	
PROTEIN SYNTHESIS	113

CHAPTER 8

TRANSFER RNA: THE TRANSLATIONAL ADAPTOR

THE UNIVERSAL CLOVERLEAF	116
THE TERTIARY STRUCTURE IS L-SHAPED	116
HOW DO SYNTHETASES RECOGNIZE tRNAs?	120
DISCRIMINATION IN THE CHARGING STEP	121
CODON-ANTICODON RECOGNITION INVOLVES	
WOBBLING	123
tRNA CONTAINS MANY MODIFIED BASES	125
BASE MODIFICATION MAY CONTROL CODON	
RECOGNITION	127
MITOCHONDRIA HAVE MINIMAL tRNA SETS	127
MUTANT tRNAs READ DIFFERENT CODONS	129
SUPPRESSOR tRNAs COMPETE FOR THEIR CODONS	132
tRNA MAY INFLUENCE THE READING FRAME	133

CHAPTER 10

THE MESSENGER RNA TEMPLATE

THE TRANSIENCE OF BACTERIAL MESSAGERS	151
MOST BACTERIAL mRNAs ARE POLYCISTRONIC	153
TRANSLATION OF POLYCISTRONIC MESSAGERS	155
A FUNCTIONAL DEFINITION FOR EUKARYOTIC mRNA	156
THE POWER OF <i>IN VITRO</i> TRANSLATION SYSTEMS	158
MOST EUKARYOTIC mRNAs ARE POLYADENYLATED	

AT THE 3' END

ALL EUKARYOTIC mRNAs HAVE A METHYLATED CAP	
AT THE 5' END	161
INITIATION MAY INVOLVE BASE PAIRING BETWEEN	
mRNA AND tRNA	163
SMALL SUBUNITS MAY MIGRATE TO INITIATION SITES	
ON EUKARYOTIC mRNA	165
PROTEIN SYNTHESIS IS LINKED TO CELLULAR	
LOCATION	166

PART 3

PRODUCING THE TEMPLATE

CHAPTER 11	
RNA POLYMERASES: THE BASIC	
TRANSCRIPTION APPARATUS	171
TRANSCRIPTION IS CATALYZED BY RNA POLYMERASE	
POLYMERASE	173
SIGMA FACTOR CONTROLS BINDING TO DNA	176
CORE ENZYME SYNTHESIZES RNA	178
COMPLEX EUKARYOTIC RNA POLYMERASES	180

CHAPTER 12

PROMOTERS: THE SITES FOR CONTROLLING INITIATION

BINDING SITES FOR <i>E. COLI</i> RNA POLYMERASE	183
CONSENSUS SEQUENCES IN <i>E. COLI</i> PROMOTERS	185
FUNCTIONS OF THE CONSENSUS SEQUENCES	
SUBSTITUTION OF SIGMA FACTORS MAY CONTROL	
INITIATION	191
PROMOTERS FOR RNA POLYMERASE II ARE	
UPSTREAM OF THE STARTPOINT	196

RNA POLYMERASE II PROMOTERS ARE MULTIPARTITE	199
ENHancers ARE BIDIRECTIONAL ELEMENTS THAT ASSIST INITIATION	201
A DOWNSTREAM PROMOTER FOR RNA POLYMERASE III	203

CHAPTER 13**TERMINATION AND ANTITERMINATION**

TWO TERMINATION MODES IN <i>E. COLI</i> INVOLVE PALINDROMES	207
HOW DOES RHO FACTOR WORK?	208
ANTITERMINATION DEPENDS ON SPECIFIC SITES	211
MORE SUBUNITS FOR RNA POLYMERASE?	215
DIFFICULTIES IN EUKARYOTES	217

PART 4 CONTROLLING PROKARYOTIC GENE EXPRESSION

219

CHAPTER 14	
THE OPERON: THE LACTOSE PARADIGM	221
INDUCTION AND REPRESSION ARE CONTROLLED BY SMALL MOLECULES	221
STRUCTURAL GENES ARE CONTROLLED BY REGULATOR GENES	222
THE CONTROL CIRCUIT OF THE OPERON	224
CONSTITUTIVE MUTATIONS DEFINE REPRESSOR ACTION	224
THE OPERATOR IS C/S-DOMINANT	227
UNINDUCIBLE MUTATIONS CAN OCCUR IN THE PROMOTER OR REPRESSOR	228
HOW DOES REPRESSOR BLOCK TRANSCRIPTION?	228
CONTACTS IN THE OPERATOR	230
THE INTERACTION OF REPRESSOR SUBUNITS	231
REPRESSOR AS A DNA-BINDING PROTEIN	232
GETTING OFF DNA	233
STORING SURPLUS REPRESSOR	234
A PARADOX OF INDUCTION	236

CHAPTER 15**CONTROL CIRCUITS: A PANOPLY OF OPERONS**

237

DISTINGUISHING POSITIVE AND NEGATIVE CONTROL	237
THE TRYPTOPHAN OPERON IS REPRESSIBLE	239
THE TRYPTOPHAN OPERON IS CONTROLLED BY ATTENUATION	241
ALTERNATIVE SECONDARY STRUCTURES CONTROL ATTENUATION	241
THE GENERALITY OF ATTENUATION	246
REPRESSION CAN OCCUR AT MULTIPLE LOCI	248
CATABOLITE REPRESSION INVOLVES POSITIVE REGULATION AT THE PROMOTER	249

AUTOGENOUS CONTROL OF RIBOSOMAL PROTEIN TRANSLATION	251
AUTOGENOUS CONTROL AND MACROMOLECULAR ASSEMBLIES	253
HARD TIMES PROVOKE THE STRINGENT RESPONSE	254

CHAPTER 16**LYTIC CASCADES AND LYSOGENIC REPRESSION**

256

LYTIC DEVELOPMENT IS CONTROLLED BY A CASCADE	257
FUNCTIONAL CLUSTERING IN PHAGES T7 AND T4	259
THE LAMBDA LYTIC CASCADE RELIES ON ANTITERMINATION	259
LYSOGENY IS MAINTAINED BY AN AUTOGENOUS CIRCUIT	263
REPRESSOR IS A DIMER THAT BINDS COOPERATIVELY AT EACH OPERATOR	266
HOW IS REPRESSOR SYNTHESIS ESTABLISHED?	271
ANTIREPRESSOR IS NEEDED FOR LYTIC INFECTION	273
A DELICATE BALANCE: LYSOGENY VERSUS LYSIS	276

PART 5**CONSTITUTION OF THE EUKARYOTIC GENOME**

279

CHAPTER 17**THE EXTRAORDINARY POWER OF DNA TECHNOLOGY**

281

ANY DNA SEQUENCE CAN BE CLONED IN BACTERIA	281
CONSTRUCTING THE CHIMERIC DNA	283
COPYING mRNA INTO DNA	286
ISOLATING SPECIFIC GENES FROM THE GENOME	287
WALKING ALONG THE CHROMOSOME	289
EUKARYOTIC GENES CAN BE TRANSLATED IN BACTERIA	291

CHAPTER 18**EUKARYOTIC GENOMES: A CONTINUUM OF SEQUENCES**

293

THE C-VALUE PARADOX DESCRIBES VARIATIONS IN GENOME SIZE	293
REASSOCIATION KINETICS DEPEND ON SEQUENCE COMPLEXITY	295
EUKARYOTIC GENOMES CONTAIN SEVERAL SEQUENCE COMPONENTS	297
NONREPETITIVE DNA COMPLEXITY CAN ESTIMATE GENOME SIZE	298
EUKARYOTIC GENOMES CONTAIN REPETITIVE SEQUENCES	299
MODERATELY REPETITIVE DNA CONSISTS OF MANY DIFFERENT SEQUENCES	299
MEMBERS OF REPETITIVE SEQUENCE FAMILIES ARE RELATED BUT NOT IDENTICAL	301

CHAPTER 19**STRUCTURAL GENES:
AS REPRESENTED IN mRNA**

304

MOST STRUCTURAL GENES LIE IN NONREPETITIVE

DNA

HOW MANY NONREPETITIVE GENES ARE
EXPRESSED?

305

ESTIMATING GENE NUMBERS BY THE KINETICS OF
RNA-DRIVEN REACTIONS

307

GENES ARE EXPRESSED AT WIDELY VARYING LEVELS

309

OVERLAPS BETWEEN mRNA POPULATIONS

310

CHAPTER 20**THE ORGANIZATION
OF INTERRUPTED GENES**

312

VISUALIZING INTERRUPTED GENES BY ELECTRON
MICROSCOPY

313

RESTRICTION MAPPING OF INTERRUPTED GENES

315

CHARACTERIZING GENOMIC DNA FRAGMENTS

319

GENES COME IN ALL SHAPES AND SIZES

320

INTRONS IN GENES CODING FOR rRNA AND tRNA

322

EXON-INTRON JUNCTIONS HAVE A CONSENSUS
SEQUENCE

323

ONE GENE'S INTRON CAN BE ANOTHER GENE'S

324

EXON

MUTATIONS MAP MOSTLY IN EXONS

327

COMPLEX LOCI ARE EXTREMELY LARGE AND
INVOLVED IN REGULATION

329

HOW DID INTERRUPTED GENES EVOLVE?

333

PART 6**CLUSTERS OF
RELATED SEQUENCES**

339

CHAPTER 21**STRUCTURAL GENES
BELONG TO FAMILIES**

341

GLOBIN GENES ARE ORGANIZED IN TWO CLUSTERS

342

UNEQUAL CROSSING-OVER REARRANGES GENE
CLUSTERS

344

MANY α -THALASSEMIAS RESULT FROM UNEQUAL
CROSSING-OVER

346

NEW GENES ARE GENERATED IN β -THALASSEMIAS

346

GENE CLUSTERS SUFFER CONTINUAL
REORGANIZATION

347

SEQUENCE DIVERGENCE DISTINGUISHES TWO TYPES
OF SITES IN DNA

349

THE EVOLUTIONARY CLOCK TRACES THE
DEVELOPMENT OF GLOBIN GENES

350

MECHANISMS FOR MAINTAINING ACTIVE
SEQUENCES

352

PSEUDOGENES ARE DEAD ENDS OF EVOLUTION

GENE FAMILIES ARE COMMON FOR ABUNDANT

PROTEINS

355

CHAPTER 22**GENOMES SEQUESTERED
IN ORGANELLES**

357

ORGANELLE GENES SHOW NONMENDELIAN
INHERITANCE

357

ORGANELLE GENOMES ARE CIRCULAR DNA
MOLECULES

358

ORGANELLES EXPRESS THEIR OWN GENES

359

THE LARGE MITOCHONDRIAL GENOME OF YEAST

362

THE COMPACT MITOCHONDRIAL GENOME OF
MAMMALS

363

RECOMBINATION OCCURS IN (SOME) ORGANELLE

365

DNAs

366

REARRANGEMENTS OF YEAST MITOCHONDRIAL DNA

366

CHAPTER 23**IDENTITY AND VARIATION
IN TANDEM GENE CLUSTERS**

368

A VARIETY OF TANDEM GENE CLUSTERS CODE FOR
HISTONES

369

GENES FOR rRNA AND tRNA ARE REPEATED

371

A TANDEM REPEATING UNIT CONTAINS BOTH rRNA
GENES

372

SOME rRNA GENES ARE EXTRACHROMOSOMAL

374

ABOUT NONTRANSCRIBED SPACERS AND
PROMOTERS

375

5S GENES AND PSEUDOGENES ARE INTERSPERSED

376

AN EVOLUTIONARY DILEMMA

377

BACTERIAL rRNA GENES FORM MIXED OPERONS

378

WITH tRNA GENES

378

tRNA GENES MAY LIE IN CLUSTERS

379

CHAPTER 24**ORGANIZATION OF
SIMPLE SEQUENCE DNA**

381

HIGHLY REPETITIVE DNA FORMS SATELLITES

382

SATELLITE DNA OFTEN LIES IN HETEROCHROMATIN

383

ARTHROPOD SATELLITES HAVE VERY SHORT

384

IDENTICAL REPEATS

384

MAMMALIAN SATELLITES CONSIST OF

385

HIERARCHICAL REPEATS

385

RECONSTRUCTING THE STAGES OF MOUSE

386

SATELLITE DNA EVOLUTION

386

VARIATIONS IN THE PRESENT REPEATING UNIT

386

THE CONSEQUENCES OF UNEQUAL CROSSING OVER

386

CROSSOVER FIXATION COULD MAINTAIN IDENTICAL

387

REPEATS

387

PART 7 REACHING Maturity: RNA PROCESSING

CHAPTER 25 CUTTING AND TRIMMING STABLE RNA

PROSPHODIESTER BONDS CAN BE CLEAVED ON EITHER SIDE	396
RNAase III RELEASES THE PHAGE T7 EARLY mRNAs	396
RNAase III SEPARATES rRNAs FROM THEIR PRECURSOR	399
CLEAVAGE SITES IN THE PATHWAY FOR EUKARYOTIC rRNA RELEASE	400
tRNAs ARE CUT AND TRIMMED BY SEVERAL ENZYMES	402

CHAPTER 26 RNA AS CATALYST: MECHANISMS OF RNA SPLICING

YEAST tRNA SPLICING INVOLVES CUTTING AND REJOINING	405
THE EXTRAORDINARY SPLICING OF TETRAHYMENA rRNA	410
RNA AS CATALYST: AN EXTENSION OF BIOCHEMICAL CATALYSIS	412
AN INTRON THAT MAY CODE FOR A REGULATOR PROTEIN	413
NUCLEAR RNA SPLICING FOLLOWS PREFERRED PATHWAYS	418
MUTATIONS IN CONSENSUS SEQUENCES AFFECT SPLICING	420
NUCLEAR SPLICING JUNCTIONS MAY BE INTERCHANGEABLE	421
IS snRNA INVOLVED IN SPLICING?	424

CHAPTER 27 CONTROL OF RNA PROCESSING

hnRNA IS LARGE AND UNSTABLE	429
mRNA IS DERIVED FROM hnRNA	431
POLYADENYLATION AND THE GENERATION OF 3' ENDS	433
hnRNA IS MORE COMPLEX THAN mRNA	435
IS THERE CONTROL AFTER TRANSCRIPTION?	436
MODELS FOR CONTROLLING GENE EXPRESSION	437
THE POTENTIAL OF CELLULAR POLYPROTEINS	440

PART 8 THE PACKAGING OF DNA

CHAPTER 28 ABOUT GENOMES AND CHROMOSOMES

CONDENSING VIRAL GENOMES INTO THEIR COATS	448
THE BACTERIAL GENOME IS A NUCLEOID WITH MANY SUPERCOILED LOOPS	451
THE CONTRAST BETWEEN INTERPHASE CHROMATIN AND MITOTIC CHROMOSOMES	454
THE EUKARYOTIC CHROMOSOME AS A SEGREGATION DEVICE	458
THE EXTENDED STATE OF LAMPBRUSH CHROMOSOMES	462
POLYTENY FORMS GIANT CHROMOSOMES	463
TRANSCRIPTION DISRUPTS CHROMOSOME STRUCTURE	465
CHAPTER 29 CHROMATIN STRUCTURE: THE NUCLEOSOME	468
THE PROTEIN COMPONENTS OF CHROMATIN	469
CHROMATIN CONTAINS DISCRETE PARTICLES	470
THE NUCLEOSOME IS THE BASIC SUBUNIT OF ALL CHROMATIN	471
THE CORE PARTICLE IS HIGHLY CONSERVED	473
DNA IS COILED AROUND THE HISTONE OCTAMER	474
DNA IS SYMMETRICALLY EXPOSED TO NUCLEASES	477
THE UNRESOLVED QUESTION OF THE PERIODICITY OF DNA	479
THE ARRANGEMENT OF HISTONES AND DNA	480
ARE NUCLEOSOMES ARRANGED IN PHASE?	481
THE PATH OF NUCLEOSOMES IN THE CHROMATIN FIBER	485
LOOPS, DOMAINS, AND SCAFFOLDS	488
CHAPTER 30 THE NATURE OF ACTIVE CHROMATIN	489
NUCLEOSOME ASSEMBLY VERSUS CHROMATIN REPRODUCTION	490
NUCLEOSOME ASSEMBLY REQUIRES NONHISTONE PROTEINS	491
ARE TRANSCRIBED GENES ORGANIZED IN NUCLEOSOMES?	494
THE DNAase-SENSITIVE DOMAINS OF TRANSCRIBABLE CHROMATIN	497
NONHISTONE PROTEINS CONFER DNAase SENSITIVITY	499
HISTONES SUFFER TRANSIENT MODIFICATIONS	500
H2A IS CONJUGATED WITH UBIQUITIN ON A SUBSET OF NUCLEOSOMES	502
GENE EXPRESSION IS ASSOCIATED WITH DEMETHYLATION	503
SOME MODELS FOR THE CONTROL OF METHYLATION	504
DNAase HYPERSENSITIVE SITES LIE UPSTREAM FROM ACTIVE PROMOTERS	506
HYPERSENSITIVE SITES EXCLUDE NUCLEOSOMES	508
SPECULATIONS ABOUT THE NATURE OF GENE ACTIVATION	511

PART 9 PERPETUATION OF DNA

CHAPTER 31		
THE REPLICON: UNIT OF REPLICATION		513
SEQUENTIAL REPPLICATION FORMS EYES	516	
THE BACTERIAL GENOME IS A SINGLE REPLICON	517	
CONNECTING REPLICATION TO THE CELL CYCLE	519	
EACH EUKARYOTIC CHROMOSOME CONTAINS MANY		
REPLICONS	521	
ISOLATING THE ORIGINS OF YEAST REPLICONS	523	
REPLICATION CAN PROCEED THROUGH EYES		
ROLLING CIRCLES, OR D LOOPS	525	
PLASMID INCOMPATIBILITY IS CONNECTED WITH		
COPY NUMBER	527	

CHAPTER 32		
THE APPARATUS FOR DNA REPLICATION		532
EUKARYOTIC DNA POLYMERASES	533	
PROKARYOTIC DNA POLYMERASES HAVE SEVERAL		
ENZYMATIC ACTIVITIES	533	
DNA SYNTHESIS IS SEMIDISCONTINUOUS	537	
OKAZAKI FRAGMENTS ARE PRIMED BY RNA	539	
THE COMPLEXITY OF THE BACTERIAL REPLICATION APPARATUS	541	
INITIATING SYNTHESIS OF A SINGLE DNA STRAND	542	
MOVEMENT OF THE PRIMOSOME	544	
INITIATING REPLICATION AT DUPLEX ORIGINS	547	
THE REPLICATION APPARATUS OF PHAGE T4	551	
THE REPLICATION APPARATUS OF PHAGE T7	552	
THE PROBLEM OF LINEAR REPLICONS	553	

CHAPTER 33		
SYSTEMS THAT SAFEGUARD DNA		557
THE OPERATION OF RESTRICTION AND		
MODIFICATION	558	
THE ALTERNATE ACTIVITIES OF TYPE I ENZYMES	560	
THE DUAL ACTIVITIES OF TYPE III ENZYMES	563	
DEALING WITH INJURIES IN DNA	564	
EXCISION-REPAIR SYSTEMS IN <i>E. COLI</i>	566	
RECOMBINATION-REPAIR SYSTEMS IN <i>E. COLI</i>	569	
AN SOS SYSTEM OF MANY GENES	570	
MAMMALIAN REPAIR SYSTEMS	572	

CHAPTER 34		
RECOMBINATION AND OTHER TOPOLOGICAL MANIPULATIONS OF DNA		573
TOPOLOGICAL MANIPULATION OF DNA	574	
GYRASE INTRODUCES NEGATIVE SUPERCOILS IN		
DNA	577	

RECOMBINATION REQUIRES SYNAPSIS OF		
HOMOLOGOUS DUPLEX DNAs		578
BREAKAGE AND REUNION INVOLVES HETERODUPLEX		
DNA		
DO DOUBLE-STRAND BREAKS INITIATE		
RECOMBINATION?		582
ISOLATION OF RECOMBINATION INTERMEDIATES		
THE STRAND-EXCHANGE FACILITY OF RecA		584
RecA AND THE CONDITIONS OF RECOMBINATION		
GENE CONVERSION ACCOUNTS FOR INTERALLELIC		
RECOMBINATION		590
SPECIALIZED RECOMBINATION RECOGNIZES		
SPECIFIC SITES		592
STAGGERED BREAKAGE AND REUNION IN THE CORE		
STRUCTURE		594

PART 10 THE DYNAMIC GENOME: DNA IN FLUX

CHAPTER 35		
TRANSPOSABLE ELEMENTS IN BACTERIA		601
THE DISCOVERY OF TRANSPOSITION IN BACTERIA		
INSERTION SEQUENCES ARE BASIC TRANSPOSONS		602
COMPOSITE TRANSPOSONS HAVE IS MODULES		603
ONLY ONE MODULE OF <i>Tn</i> 10 IS FUNCTIONAL		605
THE MODULES OF <i>Tn</i> 5 ARE ALMOST IDENTICAL BUT		
VERY DIFFERENT		607
TRANSPOSITION INVOLVES REPLICATIVE		
RECOMBINATION		609
TRANSPOSITION OF <i>Tn</i> 3 PROCEEDS BY		
COINTEGRATE RESOLUTION		611
SOME UNUSUAL FEATURES OF TRANSPOSING		
PHAGE MU		613
SALMONELLA PHASE VARIATION OCCURS BY		
INVERSION		617

CHAPTER 36		
MOBILE ELEMENTS IN EUKARYOTES		621
YEAST Ty ELEMENTS RESEMBLE BACTERIAL		
TRANSPOSONS		622
SEVERAL TYPES OF TRANSPOSSABLE ELEMENTS		
RESIDE IN <i>D. MELANOGASTER</i>		623
THE ROLE OF TRANSPOSSABLE ELEMENTS IN HYBRID		
DYSGENESIS		625
THE RETROVIRUS LIFE CYCLE INVOLVES		
TRANSPOSITION-LIKE EVENTS		627
RETROVIRUSES MAY TRANSDUCE CELLULAR		
SEQUENCES		631
RNA-DEPENDENT TRANSPOSITIONS MAY HAVE		
_OCCURRED IN THE CELL		633
THE <i>Alu</i> FAMILY		

CONTROLLING ELEMENTS IN MAIZE ARE TRANSPOSABLE	
DS MAY transpose OR CAUSE CHROMOSOME BREAKAGE	
DS TRANPOSITION IS CONNECTED WITH REPLICATION	
YEAST HAS SILENT AND ACTIVE LOCI FOR MATING TYPE	
SILENT AND ACTIVE CASSETTES HAVE THE SAME SEQUENCES	
UNIDIRECTIONAL TRANPOSITION IS INITIATED BY THE RECIPIENT MAT LOCUS	

CHAPTER 37 REARRANGEMENTS AND THE GENERATION OF IMMUNE DIVERSITY

ORGANIZATION OF IMMUNOGLOBULINS	
IMMUNOGLOBULIN GENES ARE ASSEMBLED FROM THEIR PARTS	
THE DIVERSITY OF GERM-LINE INFORMATION	
JOINING REACTIONS GENERATE ADDITIONAL DIVERSITY	
RECOMBINATION OF V AND C GENES GENERATES DELETIONS AND REARRANGEMENTS	
SOME POSSIBLE CAUSES OF ALLELIC EXCLUSION	

FURTHER DNA RECOMBINATION CAUSES CLASS SWITCHING	659
REARRANGEMENT IS RESPONSIBLE FOR ACTIVATING Ig GENES	660
EARLY HEAVY-CHAIN EXPRESSION CAN BE CHANGED BY RNA PROCESSING	661
SOMATIC MUTATION GENERATES ADDITIONAL DIVERSITY	663
T-CELL RECEPTOR IS RELATED TO IMMUNOGLOBULINS	665
COMPLEXITY OF MAJOR HISTOCOMPATIBILITY LOCI	665

644

CHAPTER 38**ENGINEERING CHANGES IN THE GENOME**

TISSUE-SPECIFIC VARIATIONS OCCUR IN THE DROSOPHILA GENOME	668
SELECTION OF AMPLIFIED GENOMIC SEQUENCES	671
EXOGENOUS SEQUENCES CAN BE INTRODUCED BY TRANSFECTION	675
TRANSFECTED DNA CAN ENTER THE GERM LINE	677

646

647

649

652

GLOSSARY**SECOND EDITION INDEX**

654

655

658

668

668

671

675

677

681

695