

RECOMBINATION-REPAIR SYSTEMS IN *E. COLI*
AN SOS SYSTEM OF MANY GENES
MAMMALIAN REPAIR SYSTEMS

CHAPTER 35 ✓ RETRIEVAL AND RECOMBINATION OF DNA

RECOMBINATION REQUIRES SYNAPSIS OF HOMOLOGOUS DUPLEX DNAs
BREAKAGE AND REUNION OCCURS VIA HETERODUPLEX DNA
ISOLATION OF RECOMBINATION INTERMEDIATES
THE STRAND-EXCHANGE FACILITY OF RecA
RecA AND THE CONDITIONS OF RECOMBINATION
GENE CONVERSION ACCOUNTS FOR INTERALLELIC RECOMBINATION
SPECIALIZED RECOMBINATION RECOGNIZES SPECIFIC SITES
STAGGERED BREAKAGE AND REUNION IN THE CORE

PART 10 THE DYNAMIC GENOME: DNA IN FLUX

CHAPTER 36 ✓ TRANSPOSABLE ELEMENTS IN BACTERIA

THE DISCOVERY OF TRANSPOSITION IN BACTERIA
INSERTION SEQUENCES ARE BASIC TRANSPOSONS
COMPOSITE TRANSPOSONS HAVE *IS* MODULES
ONLY ONE MODULE OF TN10 IS FUNCTIONAL
THE MODULES OF TN5 ARE ALMOST IDENTICAL BUT VERY DIFFERENT
TRANSPOSITION INVOLVES REPLICATIVE RECOMBINATION
TRANSPOSITION OF TN3 PROCEEDS BY COINTEGRATE RESOLUTION
SOME UNUSUAL FEATURES OF TRANSPOSING PHAGE MU
Salmonella PHASE VARIATION OCCURS BY INVERSION

CHAPTER 37 MOBILE ELEMENTS IN EUKARYOTES

YEAST *TY* ELEMENTS RESEMBLE BACTERIAL TRANSPOSONS
SEVERAL TYPES OF TRANSPOSABLE ELEMENTS RESIDE IN *D. MELANOGASTER*
ABOUT COMPLEX LOCI AND CHROMOSOME WALKING
INSERTIONS AT THE *W* LOCUS DEFINE A COMPLEX TARGET

565	THE ROLE OF TRANSPOSABLE ELEMENTS IN HYBRID DYSGENESIS	619
566	CONTROLLING ELEMENTS IN MAIZE ARE TRANSPOSABLE	620
568	DS MAY TRANPOSE OR CAUSE CHROMOSOME BREAKAGE	622
570	DS TRANPOSITION IS CONNECTED WITH REPLICATION	624
571	YEAST HAS SILENT AND ACTIVE LOCI FOR MATING TYPE	625
572	SILENT AND ACTIVE CASSETTES HAVE THE SAME SEQUENCES	628
574	UNIDIRECTIONAL TRANSPOSITION IS INITIATED BY THE RECIPIENT (MAT) LOCUS	630
579		
581	CHAPTER 38	
583	ELEMENTS THAT MOVE IN AND OUT OF THE GENOME	632
584	THE RETROVIRUS LIFE CYCLE INVOLVES TRANPOSITION-LIKE EVENTS	633
	RETROVIRUSES MAY TRANSDUCE CELLULAR SEQUENCES	635
	RNA-DEPENDENT TRANSPOSITIONS MAY HAVE OCCURRED IN THE CELL	637
	TISSUE-SPECIFIC VARIATIONS OCCUR IN THE <i>DROSOPHILA</i> GENOME	638
	SELECTION OF AMPLIFIED GENOMIC SEQUENCES	641
	EXOGENOUS SEQUENCES CAN BE INTRODUCED BY TRANSFECTION	645
589	TRANSFECTED DNA CAN ENTER THE GERM LINE	646
590		
591	CHAPTER 39	
593	GENERATION OF ANTIBODY DIVERSITY	649
595	IMMUNOGLOBULIN GENES ARE ASSEMBLED FROM THEIR PARTS	652
596	THE DIVERSITY OF GERM-LINE INFORMATION	654
598	JOINING REACTIONS GENERATE ADDITIONAL DIVERSITY	656
600	RECOMBINATION OF V AND C GENES GENERATES DELETIONS AND REARRANGEMENTS	657
604	SOME POSSIBLE CAUSES OF ALLELIC EXCLUSION	660
606	FURTHER DNA RECOMBINATION CAUSES CLASS SWITCHING	662
	EARLY HEAVY-CHAIN EXPRESSION CAN BE CHANGED BY RNA PROCESSING	663
609	SOMATIC MUTATION GENERATES ADDITIONAL DIVERSITY	665
610	COMPLEXITY OF MAJOR HISTOCOMPATIBILITY LOCI	666
611	GLOSSARY	671
614		
616	INDEX	685

THE CONTRAST BETWEEN INTERPHASE CHROMATIN AND MITOTIC CHROMOSOMES	444
THE EUKARYOTIC CHROMOSOME AS A SEGREGATION DEVICE	447
THE EXTENDED STATE OF LAMPBRUSH CHROMOSOMES	450
POLYTENY FORMS GIANT CHROMOSOMES	452
TRANSCRIPTION DISRUPTS THE CHROMOSOME STRUCTURE	454

CHAPTER 29	
NUCLEOSOME PARTICLES AND THE STRUCTURE OF CHROMATIN	
THE PROTEIN COMPONENTS OF CHROMATIN	456
CHROMATIN CONTAINS DISCRETE PARTICLES	457
THE NUCLEOSOME IS THE BASIC SUBUNIT OF ALL CHROMATIN	458
THE CORE PARTICLE IS HIGHLY CONSERVED	460
DNA IS COILED AROUND THE HISTONE OCTAMER	461
DNA IS SYMMETRICALLY EXPOSED TO NUCLEASES	463
THE UNRESOLVED QUESTION OF THE PERIODICITY OF DNA	465
THE ARRANGEMENT OF HISTONES AND DNA	468
NUCLEOSOME ASSEMBLY VERSUS CHROMATIN REPRODUCTION	469
NUCLEOSOME ASSEMBLY REQUIRES NONHISTONE PROTEINS	470
THE PATH OF NUCLEOSOMES IN THE CHROMATIN FIBER	473
LOOPS, DOMAINS, AND SCAFFOLDS	474
	478

CHAPTER 30	
NUCLEOSOMES IN ACTIVE CHROMATIN	
ARE NUCLEOSOMES ARRANGED IN PHASE?	479
THE SPECIFICITY OF MICROCOCCAL NUCLEASE	480
ARE TRANSCRIBED GENES ORGANIZED IN NUCLEOSOMES?	482
THE DNAase-SENSITIVE DOMAINS OF TRANSCRIBABLE CHROMATIN	482
NONHISTONE PROTEINS CONFER DNAase SENSITIVITY	485
HISTONES SUFFER TRANSIENT MODIFICATIONS	487
H2A IS CONJUGATED WITH UBIQUITIN ON A SUBSET OF NUCLEOSOMES	489
GENE EXPRESSION IS ASSOCIATED WITH DEMETHYLATION	491
SOME MODELS FOR THE CONTROL OF METHYLATION	492
DNAase HYPERSENSITIVE SITES LIE UPSTREAM FROM ACTIVE PROMOTERS	493
NUCLEASE-SENSITIVE AND PROTECTED REGIONS	494
	497

PART 8 PERPETUATION OF DNA

CHAPTER 31	
THE REPLICON: UNIT OF REPLICATION	
DNA SYNTHESIS IS SEQUENTIAL AND SEMICONSERVATIVE	503
THE BACTERIAL GENOME IS A SINGLE REPLICON	504
CONNECTIONS BETWEEN DNA REPLICATION AND CELL DIVISION	505
EACH EUKARYOTIC CHROMOSOME CONTAINS MANY REPLICONS	507
ISOLATING THE ORIGINS OF YEAST REPLICONS	511
REPLICATION CAN PROCEED THROUGH EYES, ROLLING CIRCLES, OR D LOOPS	511
PLASMID INCOMPATIBILITY IS CONNECTED WITH COPY NUMBER	511

CHAPTER 32	
THE TOPOLOGY OF DNA REPLICATION	
DESCRIBING THE TOPOLOGY OF DNA	52
TOPOLOGICAL MANIPULATION OF DNA	52
GYRASE INTRODUCES NEGATIVE SUPERCOILS IN DNA	52
EUCARYOTIC DNA POLYMERASES	52
PROCARYOTIC DNA POLYMERASES HAVE SEVERAL ENZYMATIC ACTIVITIES	52
DNA SYNTHESIS IS SEMIDISCONTINUOUS	53
OKAZAKI FRAGMENTS ARE PRIMED BY RNA	53

CHAPTER 33	
THE ENZYMATIC APPARATUS FOR DNA REPLICATION	
THE COMPLEXITY OF THE BACTERIAL REPLICATION APPARATUS	53
INITIATING SYNTHESIS OF A SINGLE DNA STRAND	53
MOVEMENT OF THE PRIMOSOME	54
INITIATING REPLICATION AT DUPLEX ORIGINS	54
THE REPLICATION APPARATUS OF PHAGE T4	54
THE REPLICATION APPARATUS OF PHAGE T7	54
THE PROBLEM OF LINEAR REPLICONS	55

CHAPTER 34	
SYSTEMS THAT SAFEGUARD DNA	
THE OPERATION OF RESTRICTION AND MODIFICATION	55
THE ALTERNATE ACTIVITIES OF TYPE I ENZYMES	55
THE DUAL ACTIVITIES OF TYPE III ENZYMES	55
DEALING WITH INJURIES IN DNA	56
EXCISION-REPAIR SYSTEMS IN <i>E. COLI</i>	56

GENE FAMILIES ARE COMMON FOR ABUNDANT PROTEINS

351

CHAPTER 22 GENOMES SEQUESTERED IN ORGANELLES

ORGANELLE GENES SHOW NONMENDELIAN INHERITANCE

ORGANELLE GENOMES ARE CIRCULAR DNA MOLECULES

ORGANELLES EXPRESS THEIR OWN GENES

THE LARGE MITOCHONDRIAL GENOME OF YEAST

THE COMPACT MITOCHONDRIAL GENOME OF MAMMALS

RECOMBINATION OCCURS IN (SOME) ORGANELLE DNAs

REARRANGEMENTS OF YEAST MITOCHONDRIAL DNA

353

353

355

356

359

360

362

363

PART 7 REACHING MATURITY: RNA PROCESSING

CHAPTER 23 IDENTITY AND VARIATION IN TANDEM GENE CLUSTERS

THE REPETITIVE NATURE OF HISTONE GENES
A VARIETY OF TANDEM GENE CLUSTERS FOR HISTONES

GENES FOR rRNA AND tRNA ARE REPEATED

A TANDEM REPEATING UNIT CONTAINS BOTH rRNA GENES

SOME rRNA GENES ARE EXTRACHROMOSOMAL
ABOUT NONTRANSCRIBED SPACERS AND PROMOTERS

5S GENES AND PSEUDOGENES ARE INTERSPersed

AN EVOLUTIONARY DILEMMA

BACTERIAL rRNA GENES FORM MIXED OPERONS WITH tRNA GENES

tRNA GENES MAY LIE IN CLUSTERS

365

366

367

368

369

371

372

373

374

375

376

378

378

379

381

382

383

384

387

388

389

390

CHAPTER 25 CUTTING AND TRIMMING STABLE RNA

PHOSPHODIESTER BONDS CAN BE CLEAVED ON EITHER SIDE

RNAase III RELEASES THE PHAGE T7 EARLY mRNAs

RNAase III SEPARATES rRNAs FROM THEIR PRECURSOR

CLEAVAGE SITES IN THE PATHWAY FOR EUKARYOTIC rRNA RELEASE

tRNAs ARE CUT AND TRIMMED BY SEVERAL ENZYMES

395

396

397

399

401

402

CHAPTER 26

MECHANISMS OF RNA SPLICING

YEAST tRNA SPLICING INVOLVES CUTTING AND REJOINING

THE EXTRAORDINARY SPLICING OF TETRAHYMENA rRNA

NUCLEAR RNA SPLICING FOLLOWS PREFERRED PATHWAYS

SPLICING JUNCTIONS MAY BE INTERCHANGEABLE

MUTATIONS IN CONSENSUS SEQUENCES CAN AFFECT SPLICING

IS snRNA INVOLVED IN SPLICING?

405

405

408

410

412

415

416

CHAPTER 27

CONTROL OF RNA PROCESSING

hnRNA IS LARGE AND UNSTABLE

mRNA IS DERIVED FROM hnRNA

THE IMPORTANCE OF POLYADENYLATION

hnRNA IS MORE COMPLEX THAN mRNA

IS THERE CONTROL AFTER TRANSCRIPTION?

MODELS FOR CONTROLLING GENE EXPRESSION

THE POTENTIAL OF CELLULAR POLYPROTEINS

420

420

422

424

425

426

428

431

PART 8

THE PACKAGING OF DNA

CHAPTER 28

ABOUT GENOMES

AND CHROMOSOMES

CONDENSING VIRAL GENOMES INTO THEIR COATS

THE BACTERIAL GENOME IS A FOLDED NUCLEOID

THE NUCLEOID CONTAINS MANY SUPERCOILED LOOPS

420

420

422

424

425

426

428

431

437

438

441

443

CHAPTER 16

LYTIC CASCADES AND LYSOGENIC REPRESSION

THE LYTIC CYCLE HAS DISTINCT STAGES
LYTIC DEVELOPMENT IS CONTROLLED BY A CASCADE
FUNCTIONAL CLUSTERING IN PHAGES T7 AND T4
HOW LAMBDA EXERCISES ITS LYTIC CASCADE
LYSOGENY IS MAINTAINED BY AN AUTOGENOUS CIRCUIT
REPRESSOR IS A DIMER WITH DISTINCT DOMAINS
REPRESSOR BINDS COOPERATIVELY AT EACH OPERATOR
HOW IS REPRESSOR SYNTHESIS ESTABLISHED?
ANTIREPRESSOR IS NEEDED FOR LYTIC INFECTION
A DELICATE BALANCE: LYSOGENY VERSUS LYSIS

PART 5

CONSTITUTION OF THE EUKARYOTIC GENOME

CHAPTER 17

EUkARYOTIC GENOMES: A CONTINUUM OF SEQUENCES

THE C-VALUE PARADOX DESCRIBES VARIATIONS IN GENOME SIZE
REASSOCIATION KINETICS DEPEND ON SEQUENCE COMPLEXITY
EUkARYOTIC GENOMES CONTAIN SEVERAL SEQUENCE COMPONENTS
NONREPETITIVE DNA COMPLEXITY CAN ESTIMATE GENOME SIZE
EUkARYOTIC GENOMES CONTAIN REPETITIVE SEQUENCES
MODERATELY REPETITIVE DNA CONSISTS OF MANY DIFFERENT SEQUENCES
MEMBERS OF REPETITIVE SEQUENCE FAMILIES ARE RELATED BUT NOT IDENTICAL
MODERATELY REPETITIVE DNA IS INTERSPERSED WITH NONREPETITIVE DNA

CHAPTER 18

STRUCTURAL GENES: AS REPRESENTED IN mRNA

ARE STRUCTURAL GENES UNIQUE OR REPETITIVE?
MOST STRUCTURAL GENES LIE IN NONREPETITIVE DNA
HOW MANY NONREPETITIVE GENES ARE EXPRESSED?
ESTIMATING GENE NUMBERS BY THE KINETICS OF RNA-DRIVEN REACTIONS
GENES ARE EXPRESSED AT WIDELY VARYING LEVELS
OVERLAPS BETWEEN mRNA POPULATIONS

CHAPTER 19

DEALING WITH DNA

258	ANY DNA SEQUENCE CAN BE CLONED IN BACTERIA	300
259	CONSTRUCTING THE CHIMERIC DNA	303
259	COPYING mRNA INTO DNA	306
261	ISOLATING SPECIFIC GENES FROM THE GENOME	307
264	SHOTGUN CLONING TO FORM LIBRARIES	309
264	EUCARYOTIC GENES CAN BE TRANSLATED IN BACTERIA	310
265		
268		

CHAPTER 20

STRUCTURAL GENES:

INTERNAL ORGANIZATION

269	THE DISCOVERY OF INTERRUPTED GENES	312
272	VISUALIZING INTERRUPTED GENES BY ELECTRON	313
275	MICROSCOPY	313
275	RESTRICTION MAPPING OF INTERRUPTED GENES	316
	CHARACTERIZING GENOMIC DNA FRAGMENTS	318
	GENES COME IN ALL SHAPES AND SIZES	320
	INTRONS IN GENES CODING FOR rRNA AND tRNA	322
	INTRONS ARE NONREPETITIVE AND EVOLVE RAPIDLY	323
	EXON-INTRON JUNCTIONS HAVE A CONSENSUS	
	SEQUENCE	324
	ONE GENE'S INTRON CAN BE ANOTHER GENE'S EXON	325
	AN INTRON THAT MAY CODE FOR A REGULATOR	
	PROTEIN	328
	HOW HAVE INTERRUPTED GENES EVOLVED?	332
281		
283		
285		
286		

PART 6

CLUSTERS OF RELATED SEQUENCES

CHAPTER 21

STRUCTURAL GENES:

EXTERNAL RELATIONSHIPS

288	THE MULTIPLE TYPES OF GLOBIN PROTEINS	337
289	GLOBIN GENES ARE ORGANIZED IN CLUSTERS	338
290	UNEQUAL CROSSING-OVER REARRANGES GENE CLUSTERS	340
	MANY α THALASSEMIAS RESULT FROM UNEQUAL	
	CROSSING OVER	342
	NEW GENES GENERATED IN β THALASSEMIAS	343
292	GENE CLUSTERS SUFFER CONTINUAL	
292	REORGANIZATION	344
293	AN EVOLUTIONARY TREE FOR GLOBIN GENES	345
294	SEQUENCE DIVERGENCE INDICATES EVOLUTIONARY	
	SEPARATION	346
295	TWO TYPES OF DIVERGENCE IN DNA	
297	USING THE CLOCK TO FOLLOW THE GLOBIN GENES	346
298	MECHANISMS FOR MAINTAINING ACTIVE SEQUENCES	349
	PSEUDOGENES ARE DEAD ENDS OF EVOLUTION	
	350	

SIGMA FACTOR CONTROLS BINDING TO DNA	167
THE SIGMA FACTOR CYCLE	169
THE CORE ENZYME SYNTHESIZES RNA	170
FUNCTIONS OF THE CORE SUBUNITS	171
PHAGE RNA POLYMERASES MAY BE "MINIMUM" ENZYMES	172
COMPLEX EUKARYOTIC RNA POLYMERASES	172

CHAPTER 11

PROMOTERS: THE SITES FOR INITIATING TRANSCRIPTION

DEFINING THE STARTPOINT *IN VIVO* AND *IN VITRO*
BINDING SITES FOR *E. COLI* RNA POLYMERASE
SEQUENCE HOMOLOGIES IN *E. COLI* PROMOTERS
UP AND DOWN PROMOTER MUTATIONS
POINTS OF CONTACT IN THE PROMOTER
RECOGNITION AND UNWINDING OF DNA
POSITIVE REGULATION AT THE PROMOTER
POSSIBLE CONSENSUS SEQUENCES FOR RNA POLYMERASE II
IN VITRO AND "*IN VIVO*" SYSTEMS
RNA POLYMERASE II FUNCTIONS ACCURATELY *IN VITRO*
A DISCREPANCY BETWEEN THE *IN VIVO* AND *IN VITRO* BOUNDARIES
A DOWNSTREAM PROMOTER FOR RNA POLYMERASE III

CHAPTER 12

GLOBAL SWITCHES IN INITIATION

THE SPORULATION LIFE-STYLE
ALTERNATIVE PHAGE SIGMA FACTORS
EACH SIGMA MAY HAVE ITS OWN -35 AND -10 CONSENSUS SEQUENCES
NEW PHAGE RNA POLYMERASES

CHAPTER 13

TERMINATION AND ANTITERMINATION

TERMINATORS MUST BE IDENTIFIED *IN VITRO*
TERMINATION MAY OR MAY NOT NEED THE RHO FACTOR
A DIGRESSION ABOUT INVERTED REPEATS
CORE ENZYME PAUSES AT PALINDROMES
HOW DOES RHO FACTOR WORK?
MUTATIONS IN THE RHO FACTOR
ANTITERMINATION IS A PHAGE-CONTROL MECHANISM
ANTITERMINATION DEPENDS ON SPECIFIC DNA SITES
MORE SUBUNITS FOR RNA POLYMERASE?
DIFFICULTIES IN EUKARYOTES

PART 4 CONTROL OF PROKARYOTIC GENE EXPRESSION

CHAPTER 14

THE OPERON: THE LACTOSE PARADIGM

INDUCTION AND REPRESSION ARE CONTROLLED BY SMALL MOLECULES

GENE CLUSTERS ARE COORDINATELY REGULATED

A REGULATOR GENE CONTROLS THE STRUCTURAL GENES

THE CONTROL CIRCUIT OF THE OPERON

CONSTITUTIVE MUTATIONS DEFINE REPRESSOR ACTION

THE OPERATOR IS C/S-DOMINANT

UNINDUCIBLE MUTATIONS CAN OCCUR IN THE PROMOTER OR REPRESSOR

HOW DOES REPRESSOR BLOCK TRANSCRIPTION?

CONTACTS IN THE OPERATOR

THE INTERACTION OF REPRESSOR SUBUNITS

REPRESSOR AS A DNA-BINDING PROTEIN

GETTING OFF DNA

STORING SURPLUS REPRESSOR

A PARADOX OF INDUCTION

CHAPTER 15

CONTROL CIRCUITS: A PANOPLY OF OPERONS

DISTINGUISHING POSITIVE AND NEGATIVE CONTROL

THE TRYPTOPHAN OPERON IS REPRESSIBLE

A MODIFICATION OF COORDINATE REGULATION

THE TRYPTOPHAN OPERON IS CONTROLLED BY ATTENUATION

ALTERNATIVE SECONDARY STRUCTURES CONTROL ATTENUATION

THE GENERALITY OF ATTENUATION

REPRESSION CAN OCCUR AT MULTIPLE LOCI

THE ARABINOSE OPERON HAS DUAL CONTROL

THE CROWDED ARA REGULATORY REGION

A DOUBLE PROMOTER FOR THE GALACTOSE OPERON

CATABOLITE REPRESSION IMPOSES PREFERENCE FOR GLUCOSE

AUTOGENOUS CONTROL OF RIBOSOMAL PROTEIN TRANSLATION

AUTOGENOUS CONTROL AND MACROMOLECULAR ASSEMBLIES

HARD TIMES PROVOKE THE STRINGENT RESPONSE

CHAPTER 5 ✓ FROM GENE TO PROTEIN

RIBOSOMES ARE THE SITE OF PROTEIN SYNTHESIS
SEARCHING FOR THE MESSENGER
TRANSFER RNA IS THE ADAPTOR
RIBOSOMES TRAVEL IN CONVOY

75	TRANSFER RNA MAY INFLUENCE THE READING FRAME	122
76		
76		
78		
82		

PART 2 HOW PROTEINS ARE SYNTHESIZED

CHAPTER 6 ✓ THE ASSEMBLY LINE FOR POLYPEPTIDE SYNTHESIS

THE RIBOSOMAL SITES OF ACTION
INITIATION: A SPECIAL INITIATOR tRNA
INITIATION NEEDS 30S SUBUNITS AND ACCESSORY FACTORS

87		
87		
89		

THE BRIEF FREEDOM OF 30S SUBUNITS
PICKING OUT THE INITIATOR tRNA
EUCARYOTIC INITIATION INVOLVES MANY FACTORS
THE IMPORTANCE OF BEING eIF2
THE ORDER OF EVENTS IN PROCARYOTES AND EUCARYOTES
ELONGATION: BRINGING AMINOACYL-tRNA INTO THE A SITE
GTP CLEAVAGE OCCURS AFTER RIBOSOME BINDING
PEPTIDE BOND FORMATION IS A RIBOSOMAL FUNCTION
THE TRANSLOCATION STEP
GETTING THE ENERGY FOR RIBOSOMAL ACTION
TERMINATION: COMPLETING PROTEIN SYNTHESIS

91		
----	--	--

92		
----	--	--

93		
----	--	--

94		
----	--	--

95		
----	--	--

95		
----	--	--

96		
----	--	--

97		
----	--	--

98		
----	--	--

99		
----	--	--

101		
-----	--	--

102		
-----	--	--

103		
-----	--	--

104		
-----	--	--

104		
-----	--	--

107		
-----	--	--

110		
-----	--	--

111		
-----	--	--

114		
-----	--	--

115		
-----	--	--

117		
-----	--	--

118		
-----	--	--

121		
-----	--	--

103		
104		
104		
107		
110		
111		
114		
115		
117		
118		
121		

PART 3 PRODUCTION OF THE TEMPLATE

CHAPTER 10 ✓ RNA POLYMERASES: THE BASIC TRANSCRIPTION APPARATUS

165		
166		
167		

CONTENTS

PART 1 THE NATURE OF GENETIC INFORMATION

CHAPTER 1

WHAT IS A GENE? A GENETIC VIEW

A PARTICULAR FACTOR OF INHERITANCE	3
THE INDEPENDENCE OF DIFFERENT GENES	4
THE ROLE OF CHROMOSOMES IN HEREDITY	7
GENES LIE ON CHROMOSOMES	7
CHROMOSOMES CONTAIN A LINEAR ARRAY OF GENES	9
THE GENETIC MAP IS CONTINUOUS	12
ONE GENE—ONE PROTEIN	15
A NEW DEFINITION: THE CISTRON	16
A NOTE ABOUT TERMINOLOGY	17
	20

CHAPTER 2

WHAT IS A GENE?

A BIOCHEMICAL VIEW

THE GENETIC MATERIAL IS DNA	21
MORE EVIDENCE FOR THE ROLE OF DNA	22
THE COMPONENTS OF DNA	23
DNA IS A DOUBLE HELIX	26
ABOUT ALTERNATIVE DOUBLE-HELICAL STRUCTURES	28
SUPERCOILING MAY BE IMPOSED ON THE DOUBLE HELIX	31
RNA ALSO HAS SECONDARY STRUCTURE	36
DNA CAN BE DENATURED AND RENATURED	37
	39

NUCLEIC ACIDS HYBRIDIZE BY BASE PAIRING	41
THE MOLECULAR BASIS OF MUTATION	42
MUTATIONS ARE CONCENTRATED AT HOTSPOTS	45
THE RATE OF MUTATION	46

CHAPTER 3

WHAT IS A GENE?

MOLECULAR STRUCTURE

A DIRECT APPROACH TO GENE STRUCTURE	49
RESTRICTION ENZYMES CLEAVE DNA INTO SPECIFIC FRAGMENTS	50
CONSTRUCTING A RESTRICTION MAP	52
SOME NICETIES OF RESTRICTION MAPPING	53
SEQUENCING DNA	54
ARE GENES AND PROTEINS COLINEAR?	56
EUCARYOTIC GENES CAN BE INTERRUPTED	58
OVERLAPPING AND ALTERNATIVE GENES	60
WHAT'S IN A GENE?	61

CHAPTER 4

BREAKING THE GENETIC CODE

DNA NEEDS ONLY TO CODE FOR A SEQUENCE OF AMINO ACIDS	62
THE GENETIC CODE IS READ IN TRIPLETS	65
THE APPARATUS FOR SEQUENTIAL PROTEIN SYNTHESIS	67
CODONS REPRESENTING AMINO ACIDS	68
THE NATURE OF SIGNALS FOR TERMINATION	70
IS THE CODE UNIVERSAL?	72
TRANSLATION IN OVERLAPPING READING FRAMES	73