

Contents

Contributors	xiii
Preface	xvii
1 The growing family of plant cyclin-dependent kinases with multiple functions in cellular and developmental regulation	1
DÉNES DUDITS, MÁTYÁS CSERHÁTI, PÁL MISKOLCZI AND GÁBOR V. HORVÁTH	
1.1 Introduction	1
1.2 Structural diversity in the family of plant CDKs	2
1.3 Expression profiles of CDK genes: structures and functions of promoters	14
1.4 Diverse functions of CDK protein complexes in multiple regulatory mechanisms	20
1.5 Developmental consequences of altered CDK functions	24
1.6 Perspectives	25
Acknowledgments	25
References	26
2 The plant cyclins	31
JEROEN NIEUWLAND, MARGIT MENGES AND JAMES A.H. MURRAY	
2.1 Introduction	31
2.1.1 Cyclins and the cell cycle oscillator	31
2.2 The plant cyclin family	32
2.2.1 Phylogenetic relationships between animal and plant cyclins	33
2.2.2 Cyclin domains	34
2.2.3 A-type cyclins	34
2.2.4 B-type cyclins	40
2.2.5 D-type cyclins	41
2.2.6 Other cyclins	42
2.3 Expression of cyclins during the cell cycle	47
2.3.1 The G1 checkpoint	47
2.3.2 S phase	48
2.3.3 G2-M	49
2.4 Cyclins in plant development	49
2.5 Concluding remarks	53

Acknowledgments	54
References	54
3 CDK inhibitors	62
HONG WANG, YONGMING ZHOU, JUAN ANTONIO TORRES ACOSTA AND LARRY C. FOWKE	
3.1 Introduction	62
3.2 Plant CDK inhibitors and sequence uniqueness	64
3.3 Expression	66
3.4 Interactions with cell cycle proteins and CDK inhibition	68
3.5 Protein stability and modifications	71
3.6 Cellular localization	72
3.7 CDK inhibitors and plant growth and development	74
3.8 Cell cycle phase transitions	77
3.9 Cell cycle exit and endoreduplication	78
3.10 Concluding remarks	80
Notes added at proofing stage	82
Acknowledgments	82
References	82
4 The UPS: an engine that drives the cell cycle	87
PASCAL GENSCILLIK AND MARIE CLAIRE CRIQUI	
4.1 The molecular machinery mediating ubiquitin-dependent proteolysis	87
4.1.1 Ubiquitylation reaction	87
4.1.2 Ubiquitin protein ligases	89
4.2 The SCF ¹ and APC/C: the two master E3s regulating the cell cycle	89
4.2.1 The SCF: an E3 regulating the G1/S transition	90
4.2.2 The APC/C: the E3 coordinating cell cycle progression through mitosis and G1	90
4.3 Cell cycle targets of the proteolytic machinery	92
4.3.1 The transition from G1 to S phase	92
4.3.2 Regulators that control DNA replication licensing	95
4.3.3 Metaphase to anaphase transition	98
4.3.4 Mitotic cyclin destruction: the essential step to exit mitosis	99
4.3.5 APC ^{CDC20} versus APC ^{CDH1/CX852}	101
4.3.6 Regulation of endoreduplication by the APC/C	103
4.4 Conclusion	104
References	104
5 CDK phosphorylation	114
AKIE SHIMOTOHNO AND MASAAKI UMEDA	
5.1 Introduction	114
5.2 Overview of CAKs in yeasts and vertebrates	116

5.3	Vertebrate-type CAK in plants	117
5.3.1	CDKD, cyclin H and MAT1	117
5.3.2	CDKD protein complexes	119
5.3.3	CDKD in cell cycle regulation and transcriptional control	120
5.4	Plant-specific CAK	121
5.4.1	Unique features of CDK1 ¹	121
5.4.2	CAK-activating kinase activity of CDK1 ¹	122
5.5	Manipulation of <i>in vivo</i> CDK activities by CAK	124
5.6	Inhibitory phosphorylation of yeast and vertebrate CDKs	125
5.7	Inhibitory phosphorylation of plant CDKs	126
5.7.1	Plant WEE1 kinases	126
5.7.2	Requirement for tyrosine dephosphorylation in plant cell division	127
5.7.3	A CDC25-like phosphatase and an antiphosphatase in <i>Arabidopsis</i>	129
5.8	Conclusion and perspectives	130
	Acknowledgments	131
	References	131
6	E2F-DP transcription factors	138
	ELENA RAMIREZ-PARRA, JUAN CARLOS DEL POZO, BÉNÉDICTE DESVOYES, MARÍA DE LA PAZ SANCHEZ AND CRISANTO GUTIERREZ	
6.1	E2F-DP transcription factors: a historical perspective	138
6.2	Domain organization of E2F-DP proteins	139
6.2.1	DNA-binding and dimerization domains	139
6.2.2	RBR-binding domain	141
6.3	Transcriptional and post-translational regulation of E2F	141
6.3.1	Transcription	141
6.3.2	Phosphorylation	143
6.3.3	Subcellular localization	143
6.3.4	Selective proteolysis of E2F and DP	143
6.4	E2F-DP target genes	144
6.4.1	DNA replication genes	148
6.4.2	Cell cycle genes	151
6.4.3	E2F targets in differentiated cells	152
6.4.4	Genome-wide approaches to identify E2F target genes	153
6.5	Functional relevance of E2F-DP in development	154
6.6	E2F and epigenetic regulation of gene expression	155
6.7	Concluding remarks: complexity of E2F-dependent regulation of gene expression	157
	Acknowledgments	158
	References	158

7 Function of the retinoblastoma-related protein in plants	164
WILHELM GRUSSM	
7.1 Introduction	164
7.2 Retinoblastoma proteins and the tumor suppressor concept	164
7.3 The retinoblastoma pathway is conserved in animals and plants	165
7.4 Retinoblastoma proteins form complexes with E2F transcription factors to control entry into the cell cycle	166
7.5 G1 restriction point control is mediated by retinoblastoma protein phosphorylation	168
7.6 Animal and plant DNA viruses target retinoblastoma proteins to induce host DNA replication	169
7.7 Information on retinoblastoma protein function in animal development is still incomplete	169
7.8 Retinoblastoma proteins may have conserved functions in germline development	171
7.9 Retinoblastoma proteins connect stem cell maintenance to cell proliferation and differentiation	172
7.10 Perturbation of RBR during leaf development affects cell proliferation and control of DNA replication	174
7.11 Roles of retinoblastoma proteins in transcription activation and repression	175
7.12 Retinoblastoma proteins interact with polycomb group complexes in controlling gene expression	176
7.13 Conclusion	178
Acknowledgments	179
References	179
8 Auxin fuels the cell cycle engine during lateral root initiation	187
STEFFEN VANNESTE, DIRK INZÉ AND TOM BEECKMAN	
8.1 Introduction	187
8.2 Cell cycle regulation during lateral root development	188
8.3 Stemness of the xylem pole associated pericycle	189
8.4 Auxin signalling during lateral root initiation	190
8.5 Post-transcriptional feedback mechanisms on auxin signalling	193
8.6 Polar auxin transport defines lateral root boundaries	194
8.7 Cytokinins inhibit lateral root development	195
8.8 Brassinosteroids regulate auxin transport	196
8.9 Light alters auxin sensitivity	197
8.10 Conclusions and perspectives	197
References	198
9 Cell cycle control during leaf development	203
ANDREW J. FLEMING	
9.1 Introduction	203
9.2 The cell cycle and cell division during leaf initiation	204

9.2.1	Patterns of the cell cycle and cell division during leaf initiation	204
9.2.2	Manipulation of the cell cycle and cell division during leaf initiation	208
9.2.3	The role of the cell cycle and cell division during leaf initiation	211
9.3	The cell cycle and cell division during leaf growth	212
9.3.1	Patterns of the cell cycle and cell division during leaf growth	212
9.3.2	Manipulation of the cell cycle and cell division during leaf growth	214
9.3.3	The role of the cell cycle and cell division during leaf growth	218
9.4	The cell cycle and cell division during leaf differentiation	218
9.4.1	Patterns of the cell cycle and cell division during leaf differentiation	218
9.4.2	Manipulation of the cell cycle and cell division during leaf differentiation	219
9.4.3	The role of the cell cycle and cell division during leaf differentiation	220
9.5	Conclusions	221
	Acknowledgments	222
	References	222
10	Physiological relevance and molecular control of the endocycle in plants	227
	KOBE VLIEGIE, DIRK INZÉ AND LIEVEN DE VEYLDER	
10.1	Introduction	227
10.2	Occurrence and physiological role of endoreduplication in nature	227
10.2.1	Endoreduplication in nonplant species	229
10.2.2	Endoreduplication in plants	229
10.3	Molecular control of the endocycle	233
10.4	Environmental and hormonal control of the endocycle	240
10.5	Outlook	241
	Acknowledgments	242
	References	242
11	Insights into the endocycle from trichome development	249
	JOHN C. LARKIN, MATTHEW L. BROWN AND MICHELLE L. CHURCHMAN	
11.1	Introduction	249
11.2	The regulation and cell cycle context of trichome development	251
11.3	Regulation of endoreduplication during trichome development	253

11.3.1	Control of trichome endoreduplication by developmental regulators	253
11.3.2	Regulators of the G1/S transition and S-phase progression affect endoreduplication levels in trichomes	256
11.3.3	Inhibitors of trichome endoreduplication levels	257
11.3.4	Genes affecting division potential of developing trichomes	259
11.4	Conclusions and outlook	261
11.4.1	Basic mechanism of endoreduplication in trichomes resembles that of other cell types	261
11.4.2	The role of D-cyclins in trichome endoreduplication	262
11.4.3	A speculative model of endoreduplication during trichome development	263
11.4.4	Open questions and future prospects	265
	Acknowledgments	265
	References	265
12	Cell cycle control and fruit development	269
	CHRISTIAN CHÉVALIER	
12.1	Introduction	269
12.2	Fruit development: a matter of cell number and cell size	270
12.2.1	Brief description of tomato fruit development	270
12.2.2	Hormonal signalling in fruit set and development	272
12.3	Cell cycle gene expression and fruit development	274
12.3.1	Core cell cycle genes in tomato	274
12.3.2	Expression of cell cycle genes during fruit development	277
12.3.3	Temporal expression of cell cycle genes in the different fruit tissues	278
12.4	Altering the cell cycle towards endoreduplication: a key feature for fruit growth	280
12.4.1	Role of WEE1 in endoreduplication during tomato fruit development	281
12.4.2	Role of ICK/KRP in endoreduplication during tomato fruit development	283
12.5	Genetic control of fruit size	285
12.6	Metabolic control of fruit development and growth	286
12.7	Conclusion	288
	Acknowledgments	290
	References	290
13	Cell cycle and endosperm development	294
	PAOLO A. SABELLI, HONG NGUYEN AND BRIAN A. LARKINS	
13.1	Introduction	294
13.2	Endosperm development: a cell cycle perspective	294

13.3	Genetic control of endosperm cell proliferation	298
13.4	The cell cycle molecular engine during endosperm development	301
13.5	Role of CDKA in the endoreduplication cell cycle	302
13.6	Environmental and hormonal control of the cell cycle	303
13.7	Epigenetic control	305
13.8	Perspectives	306
	Acknowledgments	307
	References	307
14	Hormonal regulation of cell cycle progression and its role in development	311
	PETER C.L. JOHN	
14.1	Introduction	311
14.2	Auxin and cytokinin have paramount roles in cell proliferation control	312
14.3	Growth and cell cycle gene expression induced by auxin and cytokinin	312
14.4	Does cell cycle progression affect growth?	314
14.5	Division sustains continuation of growth	315
14.6	Localized growth	316
14.7	Hormonal impacts at the G1/S phase progression	316
14.8	Hormonal impacts at the G2/M phase progression	318
14.9	Roots and shoots provide each other with hormones essential for division	322
14.10	Cytokinin contributions to stem cell and meristem identity at the shoot apex	322
14.11	Auxin contributions to stem cell and meristem activity at the root apex	323
14.12	Hormones and the balance of cell proliferation between root and shoot	324
14.13	Auxin/cytokinin ratio and initiation of cell proliferation in lateral meristems	325
14.14	Possible mechanisms for cell cycle response to hormone concentration and ratio	326
14.15	Cell cycle control in the spacing of lateral organs	328
	References	329
15	Cell cycle and environmental stresses	335
	CHRISTINE GRANGER, SARAH JANE COOKSON, FRANCOIS TARDIEU AND BERTRAND MULLER	
15.1	Introduction	335
15.2	Environmental stresses affect spatial and temporal patterns of cell division rate in plant organs	336

15.2.1	Spatial and temporal patterns of cell division rate in plant organs are a useful framework for analyzing the effects of environmental stresses on cell division	336
15.2.2	Effects of water deficit	338
15.2.3	Salt stress, low nitrogen and low phosphorus produce similar effects to those due to water deficit	339
15.2.4	Effects of light and CO_2	339
15.2.5	Effects of temperature	339
15.3	Coupling and uncoupling of cell division and tissue expansion in response to environmental conditions	340
15.3.1	Under several circumstances, cell division and tissue expansion are coupled	340
15.3.2	Uncoupling of cell division and tissue expansion is revealed by the analysis of cell size in response to environmental stresses	343
15.3.3	Cessation of cell division could be a cause of cessation of elongation in roots in response to environmental stimuli	344
15.4	Environmental stresses cause a blockage at the G1-S and G2-M transitions	344
15.4.1	The plant cell cycle can be regulated at multiple points but it appears that major controls operate at the G1-S and G2-M transitions in response to environmental stresses	345
15.4.2	Evidence that non-stressing temperatures lengthen cell cycle without necessarily blocking it at specific checkpoints	346
15.4.3	Environmental stresses affect the CDK activity	346
15.4.4	Controls of the G1-S and G2-M transitions in response to environmental stresses depend on the activation state of the CDK	347
15.5	Endoreduplication and abiotic stresses	347
15.5.1	Effects of water deficit	348
15.5.2	Effects of light and elevated CO_2	348
15.5.3	Effects of temperature	349
15.5.4	The role of endoreduplication in adaptation to abiotic stresses	349
15.6	Conclusion	350
	References	351
Index		356
The colour plate section appears after page		76