

Contents

Chapter 1	
Historical Introduction	1
Early history of chemistry	1
Discovery of spermine phosphate	1
Fractionation of air	2
Early modern chemistry	3
Origins of biochemistry	3
Studies on amines	4
From amines to chemical industry	4
Professionalization of biochemical research	4
Microbiology and diamines	5
Essentiality of amino acids and amines	5
Structure of spermine and discovery of spermidine	6
Spermine content of human tissues	6
Appendix—A time line: Events in chemical and biochemical prehistory of polyamines	8
Chapter 2	
Structures and Syntheses	
of Polyamines	16
Isolation of diamines	16
Diamines as precursors and analogs	16
Isolation and properties of spermine	18
Structure and synthesis of spermine	18
Structure and synthesis of spermidine	19
Syntheses and reactions of amines	19
Preparing for metabolic study	21
Site-specific syntheses	21
Guanidine derivatives	22
Chapter 3	
Properties and Analysis of Polyamines	25
Basicity of amines	26
Estimation of pK by nuclear magnetic resonance (NMR)	26
Reactions of amines	28
Reactions of quantitative analysis	31
Other reactions	32
Oxidative reactions	32
Separation techniques	32
Paper chromatography	33
Paper electrophoresis	33
Thin-layer chromatography	33
Ion-exchange separation and HPLC	34
Enzymes and enzymatic assays	37
Gas-liquid chromatography (GLC) and GC-MS	38
Immunoassay	40
Analytical accuracy	41
Chapter 4	
Macrocyclic Polyamines—A Digression?	44
Coordination compounds and some reactions of copper	45
Platinum and palladium complexes	47
Enter the macrocyclic polyamines	47
Biological activities of macrocyclic polyamines	49
Summary	51

Chapter 5**Free Polyamines and Their Distribution 53**

- Odors and amines 55
- Discovery of hydroxypyputrescine and hydroxyspermidine 55
- Spermine among microbes 57
- Polyamines and thermophilic microorganisms 57
- Polyamines in microbial evolution: The problem of the RNA world 60
- Spermine in bacteria 60
- Studies with cyanobacteria 61
- Polyamines in nucleated cells 61
- Putrescine and homospermidine 64
- Adaptation to salt 65
- Summary and conclusions 66

Chapter 6**Polyamine Oxidases and Dehydrogenases 69**

- Histaminase and discovery of diamine oxidase (DAO) 69
- Toxicity of spermine 70
- Antibacterial action of oxidized spermine 70
- Role of spermine in human prostatic fluid and semen 70
- Toxic aldehyde products of polyamine oxidation 71
- Problem of primary toxic agent 72
- New amine oxidases and problems of nomenclature 73
- Some characteristics of classical MAO 74
- Some early copper-containing proteins and enzymes 75
- Copper-containing bovine plasma amine oxidase 75
- Nature of organic cofactor 76
- Animal enzymes: Histaminase and amiloride-binding protein 78
- Peptidyl-lysyl amine oxidases and copper-related cross-linking 79
- Some plant amine oxidases 79
- Stereochemical specificity of animal and plant enzymes 80
- Fungal copper-containing oxidases 80
- Some bacterial enzymes 81
- Methylamine dehydrogenases 81
- Amine oxidation and polyamine assay 81
- Organic products of copper amine oxidases 81
- Organic products of some plant, fungal, and microbial PAOs and dehydrogenases 82
- H_2O_2 in assay of amine oxidases and polyamines 83

Animal flavin-containing PAO 84

Nonacetylated polyamines and plant flavin-containing oxidases 85

Pyrroline oxidation products 85

Inhibitors and roles of amine oxidases 86

Hydrogen peroxide as toxic product of amine oxidases 89

Summary 89

Chapter 7**Bacterial Metabolism and Polyamines 94**

Why study bacteria? 94

A biological and biochemical context of the bacteriological world 94

Maintaining an intact cell 97

Polyamines and the bacterial envelope 97

Ornithine and diamines as cell wall and membrane constituents 99

Osmoregulation in bacteria 99

Early observations on transport of polyamines 101

Inorganic cations and polyamines 103

Polyamines and isolation of internal organelles: Ribosomes 104

Nucleoid 107

Activities of bacterial chromosome: RecA and homologous recombination 108

Repair of DNA 109

DNA replication 109

Synthesis, accumulation, regulation, and elimination in developing cultures 110

Growth phases 110

Chemostat and control of rate of growth and cell size 112

Acetylation in batch cultures 113

Studies on stringent and relaxed responses 114

Formation of glutathionylspermidine 115

E. coli deficient in polyamine 116

Recent observations on polyamine transport 116

Essentiality of polyamines 118

Chapter 8**Biosynthesis and Metabolism of Diamines in Bacteria 122**

Approaching metabolism 122

Early studies on decarboxylation of ornithine and arginine 122

Assay of ODC (EC 4.1.1.17)	124
Decarboxylases of basic amino acids	125
Guanine nucleotide activators and inhibitors of ODC	127
Polyamines as inhibitors of decarboxylases	127
PLP binding sites in decarboxylases	127
Aminotransferases and metabolism of putrescine	128
PLP-mediated reactions	128
Stereochemistry of enzymatic decarboxylation	129
Synthetic inhibitors of bacterial decarboxylases	129
Inhibition of <i>E. coli</i> bODC and bADC by <i>E. coli</i> proteins	132
Biosynthesis of ornithine and arginine	132
Bacterial pathways of arginine and ornithine catabolism	133
Genetic blocks in synthesis of putrescine	135
cAMP and expression of <i>SpeA</i> , <i>SpeB</i> , and <i>SpeC</i> genes	136
Cloning and expression of <i>SpeA</i> (bADC), <i>SpeB</i> (AUH), and <i>SpeC</i> (bODC) genes	136
Biosynthesis of lysine	137
LDC and sources of cadaverine	138
Other routes in metabolism of cadaverine and lysine	139

Chapter 9

Bacterial Paths to Spermidine and Other Polyamines 142

<i>Escherichia coli</i> as an experimental system	142
Discovery of enzymatic synthesis of spermidine in <i>E. coli</i>	143
Expanding role of AdoMet	145
Properties of AdoMet	145
Properties of decarboxylated AdoMet	146
AdoMet synthetase (methionine adenosyltransferase)	147
Analogs of methionine and inhibitors of AdoMet synthetase	148
Biosynthesis of methionine	148
Other reactions of methionine	150
Isolation and properties of AdoMetDC	151
Pyruvyl enzymes and their precursors	152
Activators and inactivation of AdoMetDC	153
Development of inactivating inhibitors of AdoMetDC	153
Bacterial mutants deficient in AdoMetDC	154
Spermidine synthase, a bacterial propylamine transferase	155

Mechanism of spermidine synthase reaction	156
Inhibitors of spermidine synthase reaction	157
Bacterial metabolism of MTA	158
Alternative synthetic paths of spermidine and norspermidine	160
Synthesis of homospermidine	161

Chapter 10

Microbial Eucaryotic Systems: Fungi and Slime Molds 165

Fungal systems	165
Classifying fungi and slime molds	166
Biological properties of <i>Saccharomyces cerevisiae</i> and <i>Neurospora crassa</i>	166
Polyamines in life of <i>S. cerevisiae</i>	167
Aminopropyl transfer in strains of <i>S. cerevisiae</i>	171
Enzymes of polyamine pathway	172
ODC	172
AdoMet synthetase	172
AdoMetDC	172
Propylamine transferases	174
New polyamine functions in yeast systems	174
Hypusine and translation	174
Processing of tRNA precursors	175
Splicing of mRNA	175
Studies with <i>N. crassa</i>	175
Vacuolar cations and anions in fungi	177
Problem of concentration of free polyamines and metabolites	177
Putrescine-deficient <i>Neurospora</i> and polyamine pathway	178
Regulation of ODC and polyamine pathway	179
Studies with <i>Physarum polycephalum</i>	179
<i>Dictyostelium discoideum</i> and polyamines	180

Chapter 11

Polyamines in the Animal Cell 184

Polyamines as nutrients in clonal growth	185
Early data on tissue polyamines	185
Data on development	186
Osmotic effects on polyamine metabolism	187
Cytochemical studies	189
Cellular aging	189
Studies of suspension cultures	190
Effects of inhibitors on cell cultures	191
Enucleation and distribution of amines	192

Studies with monolayers	193
Activation of human lymphocytes	196
Experiments with bovine lymphocytes	197
Additional dissections of cell cycle	197
Reversing tumorigenicity	199
Transformed cells	200
Summary and comment	203

Chapter 12
Pathways of Polyamine Metabolism
in Animals 208

Nitrogen metabolism, with special reference to arginine and ornithine	209
Nitrogen metabolism, with special reference to methionine	211
Discovery of polyamine metabolites	211
Polyamines of nerve tissue	211
Urinary excretion of polyamines	213
Urinary excretion of polyamines and their metabolites	215
Blood polyamines and their conjugates	215
Acetylation and catabolic cycles	216
Synthesis of GABA from putrescine	217
Brief summary scheme of biosynthesis and catabolism	220
Discovery of regulation of ODC in liver	220
Hormonal control of polyamine synthesis in gonadal and accessory tissues	222
Hypusine, a posttranslational product of spermidine metabolism	224
Biosynthesis and possible role of hypusine	225
Summary	226

Chapter 13
Biosynthetic Enzymes of Animal Tissues and Cells: Part I
Properties and Regulation of Ornithine Decarboxylase 231

Early studies on ODC	232
Assay of tissue ODC	232
Cellular sites of ODC activity	232
Studies on role and purification of ODC	233
Properties of purified mammalian ODC	233
Charge heterogeneity and modification of ODC	234
In vitro activity of ODC	235
ODC as lysine decarboxylase (LDC)	236

Mechanism of ODC reaction	236
Regulation of ODC by polyamines and discovery of antizyme	237
Pursuit of antizyme and its role	238
Regulation of synthesis of antizyme	239
Exploiting mutations in polyamine metabolism	240
Roles of arginine and arginase	240
ODC-overproducing mutants	241
Determination of nucleotide and amino acid sequences	241
Phosphorylation of ODC	242
Isolation and analyses of ODC genes of mouse and rat	242
Regulatory function of cAMP	243
Methylation of ODC gene and its expression	243
Human <i>Odc</i> and its effects in transgenic mice	243
Transcription of ODC gene and nature of ODC mRNA	245
Translational controls of ODC	246
In vitro studies of translation	247
ODC degradation	248
ODC structure and its stability in cells	249
Activity and degradation of ODC	250
Proteolytic degradation of ODC	250
Inhibition of mammalian ODC	250
Summary	254

Chapter 14
Mammalian Biosynthetic Enzymes: Part II 260

Methionine and AdoMet	261
Inhibitors of methionine adenosyltransferase	264
AdoMet synthetase	264
Transport of AdoMet	264
AdoMetDC	265
dAdoMet	266
Physiological regulation of AdoMetDC in animals	267
Discovery and processing of enzyme precursor	268
Genetic determinants of AdoMetDC	269
Molecular regulation of enzyme expression by polyamines and their inhibitors	270
MGBG and its toxicity	270
Propylamine transferases	273
Specificity of spermidine synthase	274
Specificity of spermine synthase	275
Human gene for spermidine synthase	276
Inhibitors of spermidine synthase	277

Inhibitors of spermine synthase	278	SSAT: The inducible N^1 -acetyl transferase	310
Metabolism of MTA	279	Nuclear polyamine and histone N -acetylases	312
Isolation and properties of MTA phosphorylase	280	Deacetylation of N^8 -acetylspermidine	312
From MTA to methionine	281	SSAT induction by polyamine analogues	313
		SSAT protein and gene	314

Chapter 15

Thinking About Cancer: Carcinogenesis Initiation 287

Initiation and promotion	287
Mutagenesis and alkylation	288
Detection of mutagenesis and antimutagenesis	288
Polyamines in tests of mutagenicity	289
Oncogenicity of acrolein	290
Chemical effects of nitrous acid	290
Mutagenicity of nitrosamines	291
Converting polyamines to mutagens	291
The nitrite problem and biosynthesis of nitric oxide	292
Nitric oxide adducts and mutagenesis	293

Chapter 16

Polyamine Metabolism and Promotion of Tumor Growth 296

ODC and tumor promotion in mouse skin	296
Complexities of promotion and its inhibition	297
Retinoic acid and ODC induction	297
Protein kinases and control of ODC	298
Sphingosine and inhibition of PKC	299
Heterogeneity of tumor ODC	299
Essentiality of ODC to tumor formation in mouse skin	300
Of mice, rats, and humans	301
Multistage carcinogenesis in rodent liver	301
Ethionine and the hypomethylation problem	301
ODC in human cancers	302
Other enzymes of polyamine metabolism as possible cancer markers	302
Accumulation of polyamine in tumor cells	303
Fate of exogenous putrescine and spermidine	303
Can exogenous ornithine and arginine regulate tumorigenesis?	305
Detecting cancer markers	305
Erythrocytic polyamines	306
Analysis of CSF and brain tumors	307
Putrescine and tumorigenesis	308
Catabolic source of putrescine	308

Chapter 17

Surviving Cancers: Controlling the Disease 320

Evolution of therapeutic modalities	320
Monitoring chemotherapy	320
Anticancer antibiotics: The bleomycins	320
Provoking cell death: Effects of hyperthermia	323
Phenomena of apoptosis	324
Anticancer drugs: Blocking biosynthesis of putrescine	325
MGBG as sole or combined antitumor agent	328
New MGBG-like analogues and activities	329
Inhibition of synthesis of spermidine and spermine	330
Effects with methionine and its analogues	330
Analogues depleting and replacing normal amines	331
Approaching chemotherapy of gastrointestinal cancer	332
Polyamines in chemoprevention of cancer	334

Chapter 18

Mostly Protozoans: Some Third World Parasites 340

A peek at helminths	340
Approaching Trypanosomes	341
Studies on Tetrahymena	341
Studies on Acanthamoeba	342
How polyamines entered research on Trypanosomes	342
Relating curative effects of DFMO to effects on polyamine metabolism	344
Synergy of DFMO and bleomycin	345
From mice to humans	345
Methionine metabolism as target in Trypanosomes	346
AdoMet and resistance of Trypanosomes to DFMO	348
Metabolic stability of trypanosomal ODC	348

Trypanothione: Novel derivative of glutathione (GSH)	349
Trypanothione in life of <i>C. fasciculata</i>	351
Trypanothione in chemotherapy of African trypanosomiasis	351
Trypanothione reductase	352
Inhibitors of trypanothione reductase	353
Trypanothione peroxidase	353
Functions of GSH	354
Aspects of oxidative stress	354
Exploitation of oxidative stress	355
Approaching Chagas disease and Leishmaniasis	356
Kinetoplast DNA and DNA topoisomerases	357
Forays into malarial disease	358
Polyamines and vaginitis	360
Concluding remarks	360

Chapter 19 Viruses 366

Historical introduction	366
Bacterial viruses	367
Polyamines of T-even bacteriophages	367
Synthesis of T-even viral polymers and polyamine biosynthesis	368
Synthesis of viral polymers in polyamine-depleted <i>E. coli</i> mutants	369
Early mRNA and hydrolysis of AdoMet in T3 infection	371
DNA phages and topoisomerases	372
Compaction of DNA	374
Head-full hypothesis	376
DNA injection	378
Putrescyl thymine in <i>Pseudomonas</i> phage	378
RNA bacteriophages	379
Animal DNA viruses	381
Vaccinia virus	381
Herpes virus Type I (HSV1)	382
HCMV	382
Animal RNA viruses	384
Data on picornaviruses	384
Multiplication of Semliki Forest virus (SFV)	385
Plant viruses	386
TMV	387
TYMV	387
Polyamine metabolism in TYMV-infected plant cells	390
Concluding remarks	391

Chapter 20 Plant Metabolism 396

Assay of plant polyamines	397
Data on plant (and food) content of polyamines	397
Plant polyamines	398
Photosynthetic bacteria and algae	399
Polyamine distribution in tissues of higher plants	401
Putrescine biosynthesis and mineral deficiency	402
A path of nitrogen assimilation	403
Putrescine and osmotic stress	404
Light controls	405
Other environmental effects	405
Radical scavenging	405
Toxicity of paraquat	406
Metabolism of arginine	406
ADC	406
Plant ODC	407
Curing plants of fungal infections	407
Path from agmatine to putrescine	408
Guanidino compounds and transamidination	409
Biosynthetic origins of plant methionine	410
AdoMet and its biosynthesis	411
Origins of azetidine-2-carboxylic acid	411
<i>S</i> -methylcysteine and <i>S</i> -methylmethionine (SMM)	412
Methylation reactions and fate of <i>S</i> -adenosyl-homocysteine (AdoHcy)	412
Pathways for synthesis of spermidine and spermine	412
Polyamines in plant cells: Dormancy break and embryogenesis	414
Protoplasts	415
Stages of plant development	415
Floral initiation and polyamine conjugates	417
Free and bound polyamines	418
Hydroxycinnamoyl amides	420
Biosynthesis and metabolism of hydroxycinnamoyl amides	422
Metabolic controls on synthesis of phenolic acid amides	423
Fruit development	425
Ethylene: Multifunctional plant hormone	425
Biosynthesis of ethylene and its intermediates	427
Possible reciprocal relations of polyamines and ethylene	430
Polyamine-derived alkaloids	430
Nicotine and other putrescine-derived alkaloids	431
Cadaverine-derived alkaloids	434

Chapter 21

Molecular Reactions at Cell Surfaces	443
Transglutaminase and polyamine participation	444
Mechanism of transglutaminase reaction	445
Tying fibrin clots to cells	446
Erythrocyte transglutaminase	447
Transglutaminase of scavenging cells	447
Membranous substrates	448
Diversity of transglutaminase functions	448
Unexpected "transglutaminases" of plant, microbial, and animal origin	451
Cross-linking and the γ -glutamyl amines	451
Some cellular systems	452
Metastasis	452
Apoptosis and isopeptide bonds	453
Psoriasis	453
Tissue or Type II transglutaminases	454
Epidermal transglutaminase	455
Matrix, membranes, and messages	456
Polyamine effects on intercellular reactions	456
Reactions with erythrocyte membranes	458
Receptors and cascades	459
Inositol derivatives and second messengers	459
Polyamines in activation and inhibition of PKC	461
CKI and CKII	462
Data on PTKs	464
Tying inner structures to cell surface	465
Transport in animal cells	467
Mitochondria, spermine, and Ca^{2+}	470
Brief summary	472

Chapter 22

Molecular Effects on Internal Cellular Polymers	481
--	------------

Observations with protein enzymes	481
Protein structure and folding	482
Polyamines, protein isolation, and characterization	482
Ryanodine receptor from skeletal muscle	482
Activation of RNase A by covalently bound spermine	482
Nuclease function and polyamines	483
Two spermine-binding proteins	484
Data on eucaryotic DNA polymerases	484
Retroviral DNA-directed synthesis	485

Additional remarks on DNA topoisomerases	485
Eucaryotic nucleus	487
Regulation of DNAases	487
Chemical cleavage of DNA	488
Polyamines and chromatin	489
Metabolic modifications of chromatin	491
Nucleolar activity	492
Transcription and bacterial RNA polymerases (RP)	493
Phage-induced DNA-dependent RNA polymerases	493
Eucaryotic DNA-dependent RNA polymerases	494
Mitochondrial DNA-dependent RNA polymerases	495
Polyamines and protein synthesis	495
Ribosomal subunits and their association	495
Polyamine-deficient ribosomes	496
Additional phenomena of prokaryotic protein synthesis	497
Roles of Mg^{2+} and polyamines	498
Free cations and toxicity of polyamine excess	499
Aspects of eucaryotic protein synthesis	501
Eucaryotic mRNA	502
Unfolding of ribosomal subunits and ribosomal RNA	502
Structure of ribosomal RNA and antibiotic sensitivities	503
Polyamine-dependent ribosomal systems	504
Assembly of ribosomal subunits	504
Effects of Mg^{2+} and polyamines on polyribonucleotides	505

Chapter 23

Molecular Effects on Internal Cellular Polymers: Transfer RNA and DNA	512
--	------------

Polyamines and analysis of tRNA	512
Chemical approaches to the nature of polyamine-binding sites in tRNA	513
Quantitation of tRNA binding sites for polyamine	515
Crystallographic analysis of tRNA	517
NMR and binding to tRNA	518
Modification of tRNA bases	520
Methylation of tRNA	520
Completing the acceptor stem of tRNA	521
Catalytic RNA in tRNA processing and splicing	522

Synthesis of aminoacyl-tRNA	522	Formation and structure of Z-DNA containing polyamines	533
Misacylation	524	NMR studies of DNA in solution	536
Fidelity of translation at the ribosome	524	Molecular modeling and dynamics	537
Errors of processivity in translation	526	Structural distortions in DNA-drug interactions	537
Early studies of DNA-polyamine complexes	527	On the cutting edge	539
Crystals of polyamine phosphates and early models of DNA complexes	528		
Condensed DNA, compaction, and nonspecific cationic interaction	529		
Flexibility of DNA structure	531		
Crystallization of B-DNA	532		

Figure and Table Credits 545**Index** 555