

Contents

Preface xv
Organization and Features of The Cell xvii
Acknowledgments xxi
Reviewers xxiii

PART I *Introduction*

1

An Overview of Cells and Cell Research 3

✓ THE ORIGIN AND EVOLUTION OF CELLS 4

The First Cell 4
The Evolution of Metabolism 7
Present-Day Prokaryotes 8
Eukaryotic Cells 9
The Development of Multicellular Organisms 12

✓ CELLS AS EXPERIMENTAL MODELS 15

E. coli 15
Yeast 16
Dictyostelium discoideum 16
Caenorhabditis elegans 17
Drosophila melanogaster 18
Arabidopsis thaliana 18
Vertebrates 18

TOOLS OF CELL BIOLOGY 20

Light Microscopy 20
Electron Microscopy 23
Subcellular Fractionation 27
Growth of Animal Cells in Culture 30
Culture of Plant Cells 32
Viruses 33
SUMMARY AND KEY TERMS 36
QUESTIONS 37

REFERENCES AND FURTHER READING 37

KEY EXPERIMENT Animal Cell Culture 31
MOLECULAR MEDICINE Viruses and Cancer 35

2

The Chemistry of Cells 39

THE MOLECULAR COMPOSITION OF CELLS 39

Carbohydrates 40
Lipids 42
Nucleic Acids 45
Proteins 48

THE CENTRAL ROLE OF ENZYMES AS BIOLOGICAL CATALYSTS 54

The Catalytic Activity of Enzymes 54
Mechanisms of Enzymatic Catalysis 55
Coenzymes 59

Regulation of Enzyme Activity 60

METABOLIC ENERGY 62

Free Energy and ATP 62
The Generation of ATP from Glucose 65
The Derivation of Energy from Other Organic Molecules 69
Photosynthesis 70

THE BIOSYNTHESIS OF CELL CONSTITUENTS 72

Carbohydrates 72
Lipids 74
Proteins 75
Nucleic Acids 76

CELL MEMBRANES 77

Membrane Lipids 78
Membrane Proteins 79
Transport across Cell Membranes 80
SUMMARY AND KEY TERMS 82

QUESTIONS 84

REFERENCES AND FURTHER READING 85

KEY EXPERIMENT The Folding of Polypeptide Chains 50

MOLECULAR MEDICINE Phenylketonuria 74

3

Fundamentals of Molecular Biology 87

HEREDITY, GENES, AND DNA 87

Genes and Chromosomes 88
Genes and Enzymes 90
Identification of DNA as the Genetic Material 91
The Structure of DNA 92
Replication of DNA 94

EXPRESSION OF GENETIC INFORMATION	95
Colinearity of Genes and Proteins	95
The Role of Messenger RNA	96
The Genetic Code	97
RNA Viruses and Reverse Transcription	99
RECOMBINANT DNA	102
Restriction Endonucleases	102
Generation of Recombinant DNA Molecules	105
Vectors for Recombinant DNA	107
DNA Sequencing	109

Expression of Cloned Genes	111
Amplification of DNA by the Polymerase Chain Reaction	113
DETECTION OF NUCLEIC ACIDS AND PROTEINS	114
Nucleic Acid Hybridization	115
Detection of Small Amounts of DNA or RNA by PCR	115
Antibodies as Probes for Proteins	117
Probes for Screening Recombinant DNA Libraries	118
GENE FUNCTION IN EUKARYOTES	120

Genetic Analysis in Yeasts	120
Gene Transfer in Plants and Animals	121
Mutagenesis of Cloned DNAs	125
Introducing Mutations into Cellular Genes	126
SUMMARY AND KEY TERMS	129
QUESTIONS	131
REFERENCES AND FURTHER READING	131
KEY EXPERIMENT The DNA Proviruses Hypothesis	100
MOLECULAR MEDICINE HIV and AIDS	103

PART II The Flow of Genetic Information

4

The Organization of Cellular Genomes 135

THE COMPLEXITY OF EUKARYOTIC GENOMES 135

Introns and Exons	137
Gene Families and Pseudogenes	141
Repetitive DNA Sequences	142
The Number of Genes in Eukaryotic Cells	143

CHROMOSOMES AND CHROMATIN 144

Chromatin	144
Centromeres	144
Telomeres	151

MAPPING AND SEQUENCING COMPLETE GENOMES 152

Prokaryotic Genomes	152
Sequencing the Yeast Genome	154
The Genome of <i>Caenorhabditis elegans</i>	157
The <i>Drosophila</i> Genome	158

THE HUMAN GENOME 160

Human Gene Mapping	160
Physical Mapping of the Human Genome	167
Large-Scale DNA Sequencing	170
SUMMARY AND KEY TERMS	171
QUESTIONS	172

REFERENCES AND FURTHER READING	173
KEY EXPERIMENT The Discovery of Introns	138
MOLECULAR MEDICINE Gene Therapy for Adenosine Deaminase Deficiency	168

5

Replication, Maintenance, and Rearrangements of Genomic DNA 175

DNA REPLICATION 175

DNA Polymerases	176
The Replication Fork	178
The Fidelity of Replication	184
Origins and the Initiation of Replication	185
Telomeres and Telomerase: Replicating the Ends of Chromosomes	188

DNA REPAIR 190

Direct Reversal of DNA Damage	191
Excision Repair	192
Postreplication Repair	198

RECOMBINATION BETWEEN HOMOLOGOUS DNA SEQUENCES 199

DNA Molecules Recombine by Breaking and Rejoining	199
---	-----

Models of Homologous Recombination	201
Enzymes Involved in Homologous Recombination	204

DNA REARRANGEMENTS 206

Site-Specific Recombination	206
Transposition via DNA Intermediates	211
Transposition via RNA Intermediates	214
Gene Amplification	219
SUMMARY AND KEY TERMS	221
QUESTIONS	222
REFERENCES AND FURTHER READING	223

KEY EXPERIMENT Rearrangement of Immunoglobulin Genes	212
---	-----

MOLECULAR MEDICINE Colon Cancer and DNA Repair	197
---	-----

6

RNA Synthesis and Processing 225

TRANSCRIPTION IN PROKARYOTES 225

RNA Polymerase and Transcription	226
Repressors and Negative Control of Transcription	229
Positive Control of Transcription	232
Transcriptional Attenuation	233

EUKARYOTIC RNA POLYMERASES AND BASAL TRANSCRIPTION FACTORS 235

Eukaryotic RNA Polymerases 235
Basal Transcription Factors and Initiation of Transcription by RNA Polymerase II 235
Transcription by RNA Polymerases I and III 239

REGULATION OF TRANSCRIPTION IN EUKARYOTES 240

cis-Acting Regulatory Sequences: Promoters and Enhancers 241
Transcriptional Regulatory Proteins 243

Structure and Function of Transcriptional Activators 246

Eukaryotic Repressors 251

Relationship of Chromatin Structure to Transcription 252

DNA Methylation 254

RNA PROCESSING AND TURNOVER 256

Processing of Ribosomal and Transfer RNAs 256

Processing of mRNA in Eukaryotes 258

Splicing Mechanisms 260

Variations of Pre-mRNA Splicing 264

RNA Editing 266

RNA Degradation 266

SUMMARY AND KEY TERMS 268

QUESTIONS 270

REFERENCES AND FURTHER READING 270

KEY EXPERIMENT Isolation of a Eukaryotic Transcription Factor 246

MOLECULAR MEDICINE The Pit-1 Transcription Factor and Growth Hormone Deficiency 250

Regulation of Translation 288

PROTEIN FOLDING AND PROCESSING 290

Chaperones and Protein Folding 290

Enzymes and Protein Folding 293

Protein Cleavage 295

Glycosylation 296

Attachment of Lipids 298

REGULATION OF PROTEIN FUNCTION 300

Regulation by Small Molecules 301

Protein Phosphorylation 303

Protein-Protein Interactions 304

PROTEIN DEGRADATION 305

The Ubiquitin-Proteasome Pathway 305

Lysosomal Proteolysis 306

SUMMARY AND KEY TERMS 308

QUESTIONS 310

REFERENCES AND FURTHER READING 310

KEY EXPERIMENT Catalytic Role of Ribosomal RNA 280

MOLECULAR MEDICINE Antibiotics and Protein Synthesis 283

7*Protein Synthesis, Processing, and Regulation 273***TRANSLATION OF mRNA 273**

Transfer RNAs 274

The Ribosome 275

The Organization of mRNAs and the Initiation of Translation 279

The Process of Translation 282

PART III Cell Structure and Function**8***The Nucleus 315***THE NUCLEAR ENVELOPE AND TRAFFIC BETWEEN THE NUCLEUS AND CYTOPLASM 315**

Structure of the Nuclear Envelope 316

The Nuclear Pore Complex 319

Selective Import of Proteins to the Nucleus 321

Regulation of Nuclear Protein Import 324

Transport of RNAs 325

INTERNAL ORGANIZATION OF THE NUCLEUS 326

Chromosomes and Higher-Order Chromatin Structure 326

Functional Domains within the Nucleus 328

The Nuclear Matrix 331

THE NUCLEOLUS 332

Ribosomal RNA Genes and the Organization of the Nucleolus 332

Transcription and Processing of rRNA 333

Ribosome Assembly 335

THE NUCLEUS DURING MITOSIS 336

Dissolution of the Nuclear Envelope 337

Chromosome Condensation 339

Re-formation of the Interphase Nucleus 340

SUMMARY AND KEY TERMS 342

QUESTIONS 344

REFERENCES AND FURTHER READING 344

KEY EXPERIMENT Identification of Nuclear Localization Signals 322

MOLECULAR MEDICINE Systemic Lupus Erythematosus 330

9**Protein Sorting and Transport: The Endoplasmic Reticulum, Golgi Apparatus, and Lysosomes 347****THE ENDOPLASMIC RETICULUM 347**

- The Endoplasmic Reticulum and Protein Secretion 348
- Targeting Proteins to the Endoplasmic Reticulum 350
- Insertion of Proteins into the ER Membrane 352
- Protein Folding and Processing in the ER 357
- The Smooth ER and Lipid Synthesis 359
- Export of Proteins and Lipids from the ER 363

THE GOLGI APPARATUS 365

- Organization of the Golgi 365
- Protein Glycosylation within the Golgi 366
- Lipid and Polysaccharide Metabolism in the Golgi 369
- Protein Sorting and Export from the Golgi Apparatus 370

THE MECHANISM OF VESICULAR TRANSPORT 373

- Experimental Approaches to Understanding Vesicular Transport 373
- Coat Proteins and Vesicle Budding 376
- Vesicle Fusion 378

LYSOSOMES 379

- Lysosomal Acid Hydrolases 379
- Endocytosis and Lysosome Formation 381
- Phagocytosis and Autophagy 383
- SUMMARY AND KEY TERMS 384
- QUESTIONS 386
- REFERENCES AND FURTHER READING 386
- KEY EXPERIMENT The Signal Hypothesis 352
- MOLECULAR MEDICINE Gaucher's Disease 380

10**Bioenergetics and Metabolism: Mitochondria, Chloroplasts, and Peroxisomes 389****MITOCHONDRIA 389**

- Organization and Function of Mitochondria 390
- The Genetic System of Mitochondria 391
- Protein Import and Mitochondrial Assembly 392

THE MECHANISM OF OXIDATIVE PHOSPHORYLATION 398

- The Electron Transport Chain 399
- Chemiosmotic Coupling 401
- Transport of Metabolites across the Inner Membrane 403

CHLOROPLASTS AND OTHER PLASTIDS 404

- The Structure and Function of Chloroplasts 404
- The Chloroplast Genome 406
- Import and Sorting of Chloroplast Proteins 407
- Other Plastids 410

PHOTOSYNTHESIS 411

- Electron Flow through Photosystems I and II 412
- Cyclic Electron Flow 414
- ATP Synthesis 414

PEROXISOMES 415

- Functions of Peroxisomes 415
- Peroxisome Assembly 418
- SUMMARY AND KEY TERMS 419
- QUESTIONS 420
- REFERENCES AND FURTHER READING 421
- KEY EXPERIMENT The Chemiosmotic Theory 400
- MOLECULAR MEDICINE Diseases of Mitochondria: Leber's Hereditary Optic Neuropathy 394

11**The Cytoskeleton and Cell Movement 423****STRUCTURE AND ORGANIZATION OF ACTIN FILAMENTS 423**

- Assembly and Disassembly of Actin Filaments 424
- Organization of Actin Filaments 427
- Association of Actin Filaments with the Plasma Membrane 428
- Protrusions of the Cell Surface 433
- ACTIN, MYOSIN, AND CELL MOVEMENT 435**
- Muscle Contraction 435
- Contractile Assemblies of Actin and Myosin in Nonmuscle Cells 439
- Unconventional Myosins 440
- Cell Crawling 441

INTERMEDIATE FILAMENTS 442

- Intermediate Filament Proteins 443
- Assembly of Intermediate Filaments 444
- Intracellular Organization of Intermediate Filaments 445
- Functions of Keratins and Neurofilaments: Diseases of the Skin and Nervous System 446

MICROTUBULES 447

- Structure, Assembly, and Dynamic Instability of Microtubules 447
- The Centrosome and Microtubule Organization 449
- Reorganization of Microtubules during Mitosis 457
- Stabilization of Microtubules and Cell Polarity 452

MICROTUBULE MOTORS AND MOVEMENTS 453

- Identification of Microtubule Motor Proteins 454
- Organelle Transport and Intracellular Organization 455
- Separation of Mitotic Chromosomes 458
- Cilia and Flagella 460
- SUMMARY AND KEY TERMS 463
- QUESTIONS 465
- REFERENCES AND FURTHER READING 465

KEY EXPERIMENT The Isolation of Kinesin	456
MOLECULAR MEDICINE Muscular Dystrophy and the Cytoskeleton	431

12

The Cell Surface 467

STRUCTURE OF THE PLASMA MEMBRANE	467
The Phospholipid Bilayer	467
Membrane Proteins	470
Mobility of Membrane Proteins	474
The Glycocalyx	476

TRANSPORT OF SMALL MOLECULES 476

Passive Diffusion	477
Facilitated Diffusion and Carrier Proteins	478
Ion Channels	480
Active Transport Driven by ATP Hydrolysis	486
Active Transport Driven by Ion Gradients	489

ENDOCYTOSIS 492

Phagocytosis	492
Receptor-Mediated Endocytosis	493
Protein Trafficking in Endocytosis	497

CELL WALLS AND THE EXTRACELLULAR MATRIX 500

Bacterial Cell Walls	500
----------------------	-----

Plant Cell Walls	502
The Extracellular Matrix	504

CELL-CELL INTERACTIONS 509

Cell Adhesion Proteins	509
Tight Junctions	511
Gap Junctions	513
Plant Cell Adhesion and Plasmodesmata	513
SUMMARY AND KEY TERMS	514
QUESTIONS	516
REFERENCES AND FURTHER READING	516
KEY EXPERIMENT The LDL Receptor	494
MOLECULAR MEDICINE Cystic Fibrosis	490

PART IV Cell Regulation

13

Cell Signaling 521

SIGNALING MOLECULES AND THEIR RECEPTORS 521

Modes of Cell-Cell Signaling	522
Steroid Hormones and the Steroid Receptor Superfamily	522
Nitric Oxide	524
Neurotransmitters	525
Peptide Hormones and Growth Factors	525
Eicosanoids	527
Plant Hormones	528

FUNCTIONS OF CELL SURFACE RECEPTORS 529

G Protein-Coupled Receptors	529
Receptor Protein-Tyrosine Kinases	531
Cytokine Receptors and Nonreceptor Protein-Tyrosine Kinases	535
Receptors Linked to Other Enzymatic Activities	536

PATHWAYS OF INTRACELLULAR SIGNAL TRANSDUCTION 537

The cAMP Pathway: Second Messengers and Protein Phosphorylation	537
---	-----

Cyclic GMP	540
------------	-----

Phospholipids and Ca^{2+}	540
Ras, Raf, and the MAP Kinase Pathway	544
The JAK/STAT Pathway	549

SIGNAL TRANSDUCTION AND THE CYTOSKELETON 550

Integrins and Signal Transduction	550
Regulation of the Actin Cytoskeleton	551

SIGNALING IN DEVELOPMENT AND DIFFERENTIATION 553

Mesoderm Induction in <i>Xenopus</i>	553
Eye Development in <i>Drosophila</i>	554
Vulval Induction in <i>C. elegans</i>	555

SUMMARY AND KEY TERMS	556
------------------------------	------------

QUESTIONS	558
------------------	------------

REFERENCES AND FURTHER READING	558
---------------------------------------	------------

KEY EXPERIMENT The Src Protein-Tyrosine Kinase	532
---	------------

MOLECULAR MEDICINE Cancer, Signal Transduction, and the <i>ras</i> Oncogenes	548
---	------------

14

The Cell Cycle 561

THE EUKARYOTIC CELL CYCLE 561

Phases of the Cell Cycle	562
Regulation of the Cell Cycle by Cell Growth and Extracellular Signals	564

Cell Cycle Checkpoints	566
------------------------	-----

Coupling of S Phase to M Phase	567
--------------------------------	-----

REGULATORS OF CELL CYCLE PROGRESSION 568

MPF: A Dimer of Cdc2 and Cyclin	568
---------------------------------	-----

Families of Cyclins and Cyclin-Dependent Kinases	573
--	-----

Growth Factors and the D-Type Cyclins	574
---------------------------------------	-----

Inhibitors of Cell Cycle Progression	576
--------------------------------------	-----

THE EVENTS OF M PHASE 577

Stages of Mitosis	577
-------------------	-----

MPF and Progression to Metaphase	579
----------------------------------	-----

Proteolysis and the Inactivation of MPF: Anaphase and Telophase	581
---	-----

Cytokinesis	582	Properties of Cancer Cells	604	SUMMARY AND KEY TERMS	633
MEIOSIS AND FERTILIZATION	583	Transformation of Cells in Culture	608	QUESTIONS	635
The Process of Meiosis	583			REFERENCES AND FURTHER READING	635
Regulation of Oocyte Meiosis	586	TUMOR VIRUSES	608		
Fertilization	587	Hepatitis B Viruses	608	KEY EXPERIMENT	The Discovery of
DEVELOPMENT, DIFFERENTIATION, AND PROGRAMMED CELL DEATH	589	SV40 and Polyomavirus	609	Proto-Oncogenes	614
Cell Proliferation in Adults	589	Papillomaviruses	609	MOLECULAR MEDICINE	Acute
Programmed Cell Death	592	Adenoviruses	610	Promyelocytic Leukemia and	
SUMMARY AND KEY TERMS	594	Herpesviruses	611	Retinoic Acid	631
QUESTIONS	596	Retroviruses	611		
REFERENCES AND FURTHER READING	596	ONCOGENES	612	<i>Answers to Questions</i>	637
KEY EXPERIMENT	The Discovery of MPF	Retroviral Oncogenes	612	<i>Glossary</i>	643
570	570	Proto-Oncogenes	612	<i>Index</i>	657
MOLECULAR MEDICINE	<i>In Vitro</i>	Oncogenes in Human Cancer	616		
	Fertilization	Functions of Oncogene Products	620		
		TUMOR SUPPRESSOR GENES	623		
		Identification of Tumor Suppressor Genes	623		
		Functions of Tumor Suppressor Gene Products	626		
		Roles of Oncogenes and Tumor Suppressor Genes in Tumor Development	628		
		APPLICATIONS OF MOLECULAR BIOLOGY TO CANCER PREVENTION AND TREATMENT	629		
		Prevention and Early Detection	629		
		Molecular Diagnosis	630		
		Treatment	630		

15

Cancer 599

THE DEVELOPMENT AND CAUSES OF CANCER	599
Types of Cancer	600
The Development of Cancer	601
Causes of Cancer	602

Books from the beginning of this period were thoughtful. First, *The Cell* was intended to be an approachable and readable text that undergraduate students could understand and master. At the same time, the book was planned to be intellectually gratifying and to convey not only the basics but also a sense of the excitement of modern molecular and cellular biology.

To accomplish these goals, albeit the comprehensiveness of a single authored text was important, the book was then focused on the molecular biology of cell as a unifying theme, with specialized topics discussed throughout the book as examples of more general principles. Aspects of developmental biology, the immune system, the nervous system, and plant biology are only discussed in their broader biological contexts in chapters covering areas such as gene expression, DNA rearrangements, the plasma membrane, cell signaling, and the cell cycle. This organization has helped keep *The Cell* to a manageable length, while still allowing coverage of some of the exciting areas at the frontiers of contemporary research.

Some of the most dramatic advances in recent years have come from understanding the molecular and cellular basis of human disease, in some cases allowing the development of new strategies for prevention and treatment. Examples of such relationships between cell biology and medical practice are therefore discussed throughout the text, as well as brief high-