

Contents

Preface	xiii
---------	------

1 Basic Principles of Chemical Kinetics

1.1 Order of a reaction	1
1.1.1 Order and molecularity	1
1.1.2 Determination of the order of a reaction	5
1.2 Dimensions of rate constants	6
1.3 Reversible reactions	7
1.4 Determination of first-order rate constants	9
1.5 The influence of temperature on rate constants	11
1.5.1 The Arrhenius equation	11
1.5.2 Elementary collision theory	13
1.5.3 Transition-state theory	14
Problems	16

2 Introduction to Enzyme Kinetics

2.1 Early studies: the idea of an enzyme–substrate complex	19
2.2 The Michaelis–Menten equation	20
2.3 The steady state of an enzyme-catalysed reaction	23
2.3.1 The Briggs–Haldane treatment	23
2.3.2 The Michaelis–Menten equation	24
2.3.3 Units of enzyme activity	25
2.3.4 The curve defined by the Michaelis–Menten equation	25
2.3.5 Ways of writing the Michaelis–Menten equation	27
2.4 Validity of the steady-state assumption	29
2.5 Graphs of the Michaelis–Menten equation	30
2.5.1 Plotting v against a	30
2.5.2 The double-reciprocal plot	31
2.5.3 The plot of a/v against a	32
2.5.4 The plot of v against v/a	33

2.5.5	The direct linear plot	34
2.6	The reversible Michaelis–Menten mechanism	37
2.6.1	The reversible rate equation	37
2.6.2	The Haldane relationship	40
2.6.3	“One-way enzymes”	41
2.7	Product inhibition	43
2.8	Integration of the Michaelis–Menten equation	44
2.9	Artificial enzymes, RNA enzymes and catalytic antibodies	47
2.9.1	“Alternative enzymes”	47
2.9.2	Artificial enzymes	49
2.9.3	Catalytic RNA	50
2.9.4	Catalytic antibodies	51
	Problems	51

3 Practical Aspects of Kinetic Studies

3.1	Enzyme assays	55
3.1.1	Discontinuous and continuous assays	55
3.1.2	Estimating the initial rate	56
3.1.3	Increasing the straightness of the progress curve	57
3.1.4	Coupled assays	58
3.2	Detecting enzyme inactivation	62
3.3	Experimental design	64
3.3.1	Choice of substrate concentrations	64
3.3.2	Choice of pH, temperature and other conditions	66
3.3.3	Use of replicate observations	67
3.4	Treatment of ionic equilibria	69
	Problems	72

4 How to Derive Steady-State Rate Equations

4.1	Introduction	73
4.2	The principle of the King–Altman method	74
4.3	The method of King and Altman	77
4.4	The method of Wong and Hanes	81
4.5	Modifications to the King–Altman method	82
4.6	Reactions containing steps at equilibrium	85
4.7	Analysing mechanisms by inspection	87

4.7.1	Topological reasoning	87
4.7.2	Mechanisms with alternative routes	87
4.7.3	Dead-end steps	88
4.8	Derivation of rate equations by computer	89
	Problems	91

5 Inhibition and Activation of Enzymes

5.1	Reversible and irreversible inhibition	93
5.1.1	Catalytic poisons	93
5.1.2	Analysis of the rate of inactivation	93
5.1.3	Types of reversible inhibition	94
5.2	Linear inhibition	95
5.2.1	Competitive inhibition (specific inhibition)	95
5.2.2	Mixed inhibition	98
5.2.3	Uncompetitive inhibition (catalytic inhibition)	100
5.2.4	Summary of linear inhibition types	101
5.3	Plotting inhibition results	102
5.4	Inhibition by a competing substrate	105
5.4.1	Enzyme specificity	105
5.4.2	Testing if two reactions occur at the same site	108
5.4.3	Substrate protection experiments	111
5.5	Enzyme activation	112
5.5.1	Miscellaneous uses of the term <i>activation</i>	112
5.5.2	Specific activation	112
5.5.3	Hyperbolic activation and inhibition	115
5.6	Design of inhibition experiments	116
5.7	Inhibitory effects of substrates	118
5.7.1	Non-productive binding	118
5.7.2	Substrate inhibition	121
5.8	Chemical modification as a means of identifying essential groups	122
	Problems	124

6 Reactions of More than One Substrate

6.1	Introduction	129
6.2	Classification of mechanisms	130

6.2.1	Ternary-complex mechanisms	130
6.2.2	Substituted-enzyme mechanisms	133
6.2.3	Comparison between chemical and kinetic classifications	134
6.3	Rate equations	136
6.3.1	Compulsory-order ternary-complex mechanism	136
6.3.2	Random-order ternary-complex mechanism	138
6.3.3	Substituted-enzyme mechanism	139
6.3.4	Calculation of rate constants from kinetic parameters	140
6.4	Initial-rate measurements in the absence of products	141
6.4.1	Meanings of the parameters	141
6.4.2	Apparent Michaelis–Menten parameters	143
6.4.3	Primary plots for ternary-complex mechanisms	144
6.4.4	Secondary plots	144
6.4.5	Plots for the substituted-enzyme mechanism	146
6.5	Substrate inhibition	147
6.5.1	Why substrate inhibition occurs	147
6.5.2	Compulsory-order ternary-complex mechanism	148
6.5.3	Random-order ternary-complex mechanism	148
6.5.4	Substituted-enzyme mechanism	148
6.5.5	Diagnostic value of substrate inhibition	149
6.6	Product inhibition	150
6.7	Design of experiments	153
6.8	Reactions with three or more substrates	153
	Problems	157

7 Use of Isotopes for Studying Enzyme Mechanisms

7.1	Isotope exchange and isotope effects	159
7.2	Principles of isotope exchange	160
7.3	Isotope exchange at equilibrium	163
7.4	Isotope exchange in substituted-enzyme mechanisms	164
7.5	Non-equilibrium isotope exchange	165
7.5.1	Chemiflux ratios	165
7.5.2	Isomerase kinetics	169
7.5.3	Tracer perturbation	171
7.6	Theory of kinetic isotope effects	172
7.6.1	Primary isotope effects	172
7.6.2	Secondary isotope effects	174

7.6.3	Equilibrium isotope effects	175
7.7	Primary isotope effects in enzyme kinetics	175
	Problems	177

8 Environmental Effects on Enzymes

8.1	pH and enzyme kinetics	179
8.2	Acid–base properties of proteins	180
8.3	Ionization of a dibasic acid	182
8.3.1	Expression in terms of group dissociation constants	182
8.3.2	Molecular dissociation constants	183
8.3.3	Bell-shaped curves	185
8.4	Effect of pH on enzyme kinetic constants	187
8.4.1	Underlying assumptions	187
8.4.2	pH dependence of V and V/K_m	188
8.4.3	pH-independent parameters and their relationship to “apparent” parameters	189
8.4.4	pH dependence of K_m	190
8.4.5	Experimental design	191
8.5	Ionization of the substrate	192
8.6	More complex pH effects	192
8.7	Temperature dependence of enzyme-catalysed reactions	193
8.7.1	Temperature denaturation	193
8.7.2	Temperature “optimum”	195
8.7.3	Application of the Arrhenius equation to enzymes	196
8.8	Solvent isotope effects	197
	Problems	200

9 Control of Enzyme Activity

9.1	Function of cooperative and allosteric interactions	203
9.1.1	Futile cycles	203
9.1.2	Inadequacy of Michaelis–Menten kinetics for regulation	204
9.1.3	Cooperativity	205
9.1.4	Allosteric interactions	205
9.2	The development of models to explain cooperativity	207
9.2.1	The Hill equation	207

9.2.2	An alternative index of cooperativity	209
9.2.3	Assumption of equilibrium binding in cooperative kinetics	209
9.2.4	The Adair equation	211
9.2.5	Mechanistic and operational definitions of cooperativity	214
9.3	Analysis of binding experiments: the Scatchard plot	216
9.4	Induced fit	220
9.5	Modern models of cooperativity	220
9.5.1	The symmetry model of Monod, Wyman and Changeux	221
9.5.2	The sequential model of Koshland, Némethy and Filmer	228
9.5.3	Association–dissociation models	234
9.6	Kinetic cooperativity	234
	Problems	237

10 Kinetics of Multi-Enzyme Systems

10.1	Enzymes in their physiological context	239
10.2	Metabolic control analysis	240
10.3	Elasticities	241
10.3.1	Definition of elasticity	241
10.3.2	Common properties of elasticities	245
10.3.3	Enzyme kinetics viewed from control analysis	245
10.3.4	Rates and concentrations as effects, not causes	247
10.4	Control coefficients	249
10.5	Summation relationships	251
10.6	Relationships between elasticities and control coefficients	253
10.6.1	Connectivity properties	253
10.6.2	Control coefficients in a three-step pathway	255
10.6.3	Expression of summation and connectivity relationships in matrix form	257
10.6.4	Connectivity relationship for a metabolite not involved in feedback	257
10.6.5	The flux control coefficient of an enzyme for the flux through its own reaction	258
10.7	Response coefficients: the partitioned response	259
10.8	Control and regulation	260

10.9	Mechanisms of regulation	263
10.9.1	Metabolite channelling	264
10.9.2	Interconvertible enzyme cascades	265
10.9.3	The metabolic role of adenylate kinase	267
	Problems	269

11 Fast Reactions

11.1	Limitations of steady-state measurements	271
11.2	Product release before completion of the catalytic cycle	274
11.2.1	“Burst” kinetics	274
11.2.2	Active site titration	277
11.3	Experimental techniques	277
11.3.1	Classes of method	277
11.3.2	Continuous flow	279
11.3.3	Stopped flow	280
11.3.4	Quenched flow	281
11.3.5	Relaxation methods	283
11.4	Transient-state kinetics	285
11.4.1	Systems far from equilibrium	285
11.4.2	Simplification of complex mechanisms	289
11.4.3	Systems close to equilibrium	292
	Problems	294

12 Estimation of Kinetic Constants

12.1	The effect of experimental error on kinetic analysis	297
12.2	Least-squares fit to the Michaelis–Menten equation	300
12.2.1	Introduction of error in the Michaelis–Menten equation	300
12.2.2	Estimation of V and K_m	301
12.2.3	Corresponding results for a uniform standard deviation in the rates	303
12.3	Statistical aspects of the direct linear plot	304
12.3.1	Comparison between classical and distribution-free statistics	304
12.3.2	Application to the direct linear plot	306
12.3.3	Lack of need for weighting	307

12.3.4	Insensitivity to outliers	308
12.3.5	Handling of negative parameter estimates	308
12.4	Precision of estimated kinetic parameters	310
12.5	Residual plots and their uses	313
	Problems	316
	References	317
	Solutions and Notes to Problems	325
	Index	331