

Contents

Contributors xiii

Preface xv

Part I

Prokaryotic Signaling Systems

CHAPTER 1

Universal Themes of Signal Transduction in Bacteria

BARRY L. TAYLOR and MARK S. JOHNSON

I. Introduction	3
II. Chemotactic Behavior	4
III. Chemotaxis Methodology	5
IV. Universal Themes	9
V. Conclusion	12
References	13

CHAPTER 2

Phosphorylation in Bacterial Chemotaxis

WILLIAM R. McCLEARY and JEFFRY B. STOCK

I. Introduction	17
II. Physiology of Bacterial Chemotaxis	18

III. CheY	20
IV. Receptor-Controlled Phosphorylation of CheY	24
V. Cross Talk: Phosphorylation of CheY by Other Histidine Kinases	31
VI. Histidine Kinase-Independent Phosphorylation of CheY	32
VII. Dephosphorylation of CheY: CheZ	36
VIII. Conclusions	37
References	37

CHAPTER 3

Methylation-Independent Behavioral Responses in Bacteria

JUDITH P. ARMITAGE

I. Introduction	43
II. Chemotaxis toward Phosphotransferase Sugars	44
III. Metabolism-Dependent Chemotaxis	49
IV. Intracellular Metabolites That Affect Flagellar Rotation	53
V. Electron Transport-Dependent Taxis	54
VI. Eubacterial Phototaxis	57
VII. Summary	60
References	62

CHAPTER 4

The *Agrobacterium* Ti Plasmid and Crown Gall Tumorigenesis:

A Model for Signal Transduction in Host–Pathogen

Interactions

ROBERT G. ANKENBAUER and EUGENE W. NESTER

I. Crown Gall Tumorigenesis by <i>Agrobacterium tumefaciens</i>	68
II. Plant–Bacteria Interaction in <i>vir</i> Regulon Induction	75
III. Intracellular Events in <i>vir</i> Regulon Signal Transduction	91
IV. Summary and Outlook	94
References	97

Part II

.....

Eukaryotic Signaling Systems

CHAPTER 5

Signal Transduction Systems in Eukaryotic Microorganisms, *Drosophila*, and Nematodes

JANET KURJAN

I. Introduction	107
II. Activation by $G\alpha$ Proteins	108
III. Activation by $\beta\gamma$ Subunits	111
IV. Ras	113
V. Other Signaling Systems	119
References	121

CHAPTER 6

ras and Signal Transduction during Sexual Differentiation in the Fission Yeast *Schizosaccharomyces pombe*

DAVID A. HUGHES and MASAYUKI YAMAMOTO

I. Introduction	124
II. Genetic Analysis of <i>ras</i> Function	127
III. Regulation of the Activity of Ras Protein	131
IV. Interaction of <i>ras</i> with the Pheromone-Response Pathway	134
V. Nutritional Signaling and Gene Expression	137
VI. Similarities with Signal Transduction in Vertebrates	141
References	142

CHAPTER 7

RAS Genes in the Budding Yeast *Saccharomyces cerevisiae*

KELLY TATCHELL

I. Introduction	148
II. <i>ras</i> Genes in Metazoans	148
III. <i>Saccharomyces cerevisiae</i> RAS Genes	152

IV. Ras Effectors in <i>Saccharomyces cerevisiae</i>	155
V. Regulation of Ras by Controlling the Bound GDP-GTP Ratio	163
VI. Feedback Regulation in the Ras Pathway	169
VII. Signal Transduction and Ras	170
VIII. Summary	176
References	177

CHAPTER 8

Signal Transduction Pathway for Pheromone Response in *Saccharomyces cerevisiae*

MALCOLM WHITEWAY and BEVERLY ERREDE

I. Introduction	190
II. Receptors	191
III. G Protein Components	200
IV. Post-G Protein Signal Transmission Components	209
V. Potential Targets of the Pheromone-Induced Signal	218
VI. Enigmatic Components	226
VII. Conclusions	229
References	229

CHAPTER 9

Lipopptide Pheromones of Yeast and Basidiomycetes Involved in Mating

WOLFGANG DUNTZE, RICHARD BETZ, and BERT PÖPPING

I. Overview	239
II. Biochemistry	241
III. Biosynthesis and Secretion	248
References	250

CHAPTER 10

Signal Transduction during Fertilization in *Chlamydomonas*

WILLIAM J. SNELL

I. Introduction	255
-----------------	-----

II.	<i>Chlamydomonas</i> Fertilization—Interaction between <i>mt</i> ⁺ and <i>mt</i> [−] Gametes Induces a Sexual Signal That Leads to a Set of Complex Responses	256
III.	Signal Transduction Induced by Interactions between Cell Surface Adhesion Molecules	258
IV.	Cellular Responses to the Sexual Signal	262
V.	Avenues for Future Studies of Cell Fusion-Induced Signals	270
VI.	Perspectives	271
	References	272

CHAPTER 11

Photoreception in Chlamydomonas

PETER HEGEMANN and HARTMANN HARZ

I.	Introduction	279
II.	Behavior in Light	281
III.	A Rhodopsin Is the Photoreceptor for Photomovement Responses	286
IV.	Multiple Roles of Calcium	296
V.	Ionic Composition of the Medium Controls Cellular Sensitivity in a Complex Manner	300
VI.	The Signal Transduction Chain	300
	References	304

CHAPTER 12

Paramecium Chemosensory Transduction

JUDITH VAN HOUTEN

I.	Introduction	309
II.	Stimuli	310
III.	Chemosensory Behavior	310
IV.	Signal Transduction Underlying Chemokinesis	313
V.	Context of Other Chemosensory Transduction Systems	322
VI.	Summary	324
	References	324

CHAPTER 13

Biochemistry and Genetics of Sensory Transduction in
Dictyostelium

PETER J. M. VAN HAASTERT and PETER N. DEVREOTES

I. Introduction	329
II. Components of Sensory Transduction Pathways	330
III. Genetics of Signal Transduction in <i>Dictyostelium discoideum</i>	343
IV. Comparison of Signal Transduction between <i>Dictyostelium</i> and Vertebrates	345
References	346

CHAPTER 14

Gene Regulation by Hormone-like Signals in *Dictyostelium*

PAULINE SCHAAP, DORIEN J. M. PETERS, BODDULURI HARIBABU,

and ROBERT P. DOTTIN

I. Introduction	353
II. Gene Regulation during <i>Dictyostelium</i> Development	356
III. Processing of Extracellular cAMP Signals	358
IV. Mechanisms of Gene Regulation by cAMP	360
V. Mechanisms of Gene Regulation by Other Extracellular Signals	364
VI. Signal Transduction Response Elements and <i>trans</i> -Acting Factors	365
VII. Conclusions	367
References	367

CHAPTER 15

G Proteins of *Drosophila melanogaster*

JAMES B. HURLEY

I. Introduction	377
II. Characteristics of the Known <i>Drosophila</i> G Proteins	378
III. Biochemical Evidence for G Proteins in <i>Drosophila</i>	382
IV. Genetic Approaches to Studying <i>Drosophila</i> G Proteins	383
V. Physiological Processes Mediated by G Proteins	384

VI. Summary	387
References	387

CHAPTER 16

Signal Transduction during *Caenorhabditis elegans* Vulval Determination

RAFFI V. AROIAN and PAUL W. STERNBERG

I. General Aspects of Signal Transduction and <i>Caenorhabditis elegans</i> Development	392
II. Cell Biology of the <i>Caenorhabditis elegans</i> Hermaphrodite Vulva—Development and Signal Transduction	393
III. Identification of Mutations That Affect <i>Caenorhabditis elegans</i> Vulval Development	406
IV. Building a Signal Transduction Pathway for Determination of Vulval or Hypodermal Fate	416
V. Vulval Precursor Cell–Vulval Precursor Cell Interactions and Distinguishing between Primary and Secondary Fates	428
VI. Dissecting Gene Functions and Downstream Elements	437
VII. Prospects	444
References	445
<i>Index</i>	449