

1.1	Introduction to <i>Agrobacterium</i> and crown gall disease	1.6	23
1.2	Classification of <i>Agrobacterium</i> strains	2.4	27
1.3	Pathogenicity and crown gall disease development	3.6	37
1.4	Isolation of <i>Agrobacterium</i> -infected tissues using gel electrophoresis	3.8	39
1.5	Production of Agrobacterium-free plant material	3.9	40
1.6	Introduction of crown gall resistance by genetic engineering	3.10	41

Table of Contents

Dedication	v
Contributing Authors	vii
Preface	xxix
Acknowledgments	xxxiii

Chapter 1 *Agrobacterium*: a disease-causing bacterium

1	Introduction	2
1.1	Strain classification	2
1.2	The infection process	3
2	<i>Agrobacterium</i> host range	4
3	Diversity of natural isolates	5
3.1	Strain diversity	5
3.2	pTi and pRi plasmid diversity	6
3.2.1	Opine classification	6
3.2.2	Incompatibility	8
3.3	T-DNA diversity	9
3.4	Other ecologically significant plasmids	11
4	Sources of infection and control of crown gall disease	12
4.1	Diagnostic methods	13
4.2	Soil as a potential source of infection	14
4.3	Propagating material as a source of infection	16
4.4	Selection for pathogen-free plant material: the grapevine story	17
4.5	Production of <i>Agrobacterium</i> -free plant material	19
4.6	Biological control	20
4.7	Selection and breeding for crown gall-resistant crops	23
4.8	Introduction of crown gall resistance by genetic engineering	24

4.8.1 Targeting T-DNA transfer and integration	25
4.8.2 Inhibition of oncogene expression	25
4.8.3 Manipulating plant genes for crown gall resistance	25
5 Acknowledgments	26
6 References	26

Chapter 2 A brief history of research on *Agrobacterium tumefaciens*: 1900-1980s

1 Introduction	47
2 <i>Agrobacterium</i> —the pathogen	49
2.1 Early studies	49
2.2 <i>Agrobacterium</i> ‘transforms’ plant cells	50
2.3 The “Tumor Inducing Principle” (TIP)	52
2.4 Identification of T-DNA from the Ti plasmid as the “TIP”	53
2.5 The T-DNA of the Ti plasmid: structure, function and transfer	57
3 <i>A. tumefaciens</i> as the vector of choice for plant genetic engineering	59
3.1 Setting the stage—the analysis of crown gall teratomas	60
3.2 Fate of the T-DNA in plants regenerated from <i>A. tumefaciens</i> -transformed cells	61
3.3 Construction of selectable markers provides the capacity to easily identify transformed cells carrying non-oncogenic T-DNA	63
4 Conclusions	64
5 Acknowledgments	64
6 References	65

Chapter 3 *Agrobacterium* and plant biotechnology

1 Introduction	74
2 The development of <i>Agrobacterium</i> -mediated transformation	75
2.1 Requirements for generation of transgenic plants	76
2.2 Binary vectors	78
2.3 Transgene stacking	80
2.4 Marker genes and marker-free transformation	81
2.5 Elimination of foreign DNA other than the transgene of interest	83
2.6 Influence of position effects and gene silencing on transgene expression levels	84

2.7	Targeting transgene insertions	85
2.8	Extending the range of susceptible hosts for <i>Agrobacterium</i> -mediated transformation	87
2.9	Alternatives to <i>Agrobacterium</i> -mediated gene delivery	89
3	Applications of <i>Agrobacterium</i> -mediated transformation	91
3.1	Production of foreign proteins in plant cell cultures	91
3.2	Genetic modification of plants to generate useful products	91
3.2.1	Biodegradable plastics	91
3.2.2	Primary and secondary metabolites with desirable properties	92
3.2.3	Commercially relevant traits in ornamentals and trees	94
3.2.4	Biopharmaceuticals/edible vaccines	94
3.3	Bioremediation	96
3.4	Increasing crop plant productivity by altering plant physiology and photosynthetic capacity	97
3.5	Enhancing crop productivity by mitigating external constraints	98
3.5.1	Enhanced nutrient utilization	99
3.5.2	Enhanced tolerance to abiotic stress	100
3.5.3	Improved disease resistance	103
3.6	Reduction in the use of harmful agrochemicals by enhancing plant resistance to herbicides and pests	107
3.6.1	Herbicide resistance	107
3.6.2	Insect resistance	108
3.7	Enhanced nutritional content in crop plants	110
3.7.1	“Golden Rice”	111
4	Gene flow and molecular approaches to transgene containment/monitoring	113
5	Global status of agricultural biotechnology and technology Transfer	116
6	Acknowledgments	122
7	References	122

Chapter 4 The *Agrobacterium tumefaciens* C58 genome

1	Introduction	150
2	General features of the genome	150
3	The linear chromosome	152
4	Phylogeny and whole-genome comparison	155
5	DNA replication and the cell cycle	156
6	Genus-specific genes	157
7	Plant transformation and tumorigenesis	158

8	Transport	159
9	Regulation	160
10	Response to plant defenses	162
11	General metabolism	163
12	Conclusions	166
13	Acknowledgments	169
14	References	169

Chapter 5 *Agrobacterium*—taxonomic of plant-pathogenic *Rhizobium* species

1	Introduction	184
2	Historical perspective—origins	185
2.1	Taxonomy, classification and nomenclature	185
2.2	Early days of bacterial taxonomy	187
2.3	The genus <i>Agrobacterium</i>	187
2.4	History of species allocated to <i>Agrobacterium</i>	188
2.4.1	Species transferred when <i>Agrobacterium</i> was first proposed	188
2.4.2	Additional species allocated to <i>Agrobacterium</i> after Conn proposed the genus	189
2.5	Phenotypic species classification	190
2.5.1	Pathogenic species	190
2.5.2	Comparative studies of <i>Agrobacterium</i> species	190
2.6	The approved lists and <i>Agrobacterium</i> nomenclature	191
2.6.1	Pathogenicity is plasmid-borne	191
2.7	Natural <i>Agrobacterium</i> species	192
2.7.1	Pathogenic designations	195
3	<i>Agrobacterium-Rhizobium</i> relationships	195
3.1	Phenotypic comparisons of <i>Agrobacterium</i> and <i>Rhizobium</i>	196
4	Genotypic relationships	196
4.1	Comparative molecular analysis of <i>Agrobacterium</i>	196
4.1.1	16S rDNA	196
4.1.2	Other sequences	198
4.1.3	Genomic comparisons	198
5	Plasmid transfer and genus reclassification	199
5.1	Transfer of oncogenic Ti and nodulating Sym plasmids	199
5.2	Revision of oncogenic <i>Rhizobium</i> species	199
5.2.1	Plant pathogenic <i>Rhizobium</i> species	199
6	Diversity within <i>Rhizobium</i>	200
6.1	Symbiotic <i>Agrobacterium</i> and oncogenic <i>Rhizobium</i> (and other genera)	200

6.2	Clinical ' <i>Agrobacterium</i> ' species	202
6.3	Soil agrobacteria	203
7	Revision of <i>Agrobacterium</i> nomenclature	204
7.1	Why is the revision of <i>Agrobacterium</i> nomenclature controversial?	204
7.1.1	Names are not descriptive	205
7.1.2	Binomial names should indicate natural relationships	205
7.2	The status of <i>Agrobacterium</i> nomenclature	206
7.2.1	Species	206
7.2.2	Genus	206
7.2.3	Vernacular alternative	207
8	Relationship of <i>Rhizobium</i> to other members of the Rhizobiaceae	207
9	Other ' <i>Agrobacterium</i> ' species	208
10	Summary	209
11	Acknowledgments	209
12	References	210

Chapter 6 The initial steps in *Agrobacterium tumefaciens* pathogenesis: chemical biology of host recognition

1	Introduction	222
2	Signal diversity	223
2.1	Discovery of signals	223
2.2	Structural class and diversity	224
2.3	Signal landscape	225
3	Signal recognition, integration and transmission	226
3.1	Signal recognition	226
3.1.1	Phenols	227
3.1.2	Sugars	228
3.1.3	pH	228
3.2	Signal integration and transmission	229
3.2.1	HK/RR structures and transmission	229
3.2.2	Model for signal integration in VirA/VirG	231
4	Summary	236
5	Acknowledgments	236
6	References	236

Chapter 7 *Agrobacterium*-host attachment and biofilm formation

1	Introduction	244
1.1	A simple model for agrobacterial attachment to plants?	246

2	Presumptive adherence factors	247
2.1	Flagellar motility and chemotaxis	248
2.2	Lipopolysaccharide (LPS)	250
2.3	Rhicadhesin	250
2.4	ChvA/B and cyclic β -1,2-glucans	251
2.5	The attachment (<i>Att</i>) genes—not required for attachment?	253
2.6	Synthesis of cellulose fibrils and irreversible attachment	255
2.7	Plant attachment <i>via</i> the T-pilus?	257
3	Plant receptors recognized during <i>A. tumefaciens</i> infection	258
4	Biofilm formation by <i>A. tumefaciens</i>	259
4.1	Adherent bacterial populations on plants and in the rhizosphere	259
4.2	Biofilm formation and structure	260
4.3	Mutations that diminish biofilm formation and plant attachment	261
4.4	Control of surface attachment by the ExoR protein	262
4.5	Control of biofilm maturation by an FNR homologue	264
4.6	Phosphorus limitation stimulates biofilm formation	265
5	A model for adherence and biofilm formation	266
6	A wide range of surface interactions	267
7	Conclusions	268
8	Acknowledgments	269
9	References	269

Chapter 8 Production of a mobile T-DNA by *Agrobacterium tumefaciens*

1	Introduction	280
2	<i>A. tumefaciens</i> —nature's genetic engineer	280
3	Interkingdom gene transfer	281
3.1	Overview	281
3.2	Key early experiments	281
3.3	Protein secretion apparatus	283
3.4	The conjugation model of T-DNA transfer	284
3.4.1	Promiscuous conjugation	284
3.4.2	Border sequences	285
3.4.3	The relaxosome	286
3.4.4	T-strands	288

3.4.5	Secreted single-stranded DNA-binding protein: VirE2	289
3.4.6	A pilot protein: VirD2	292
3.4.7	Functional domains of VirD2	292
3.4.8	Gateway to the pore: VirD4 coupling protein	293
4	VirD2 interacts with host proteins	294
4.1	Nuclear targeting: importin- α proteins	294
4.2	Protein phosphatase, kinase, and TATA box-binding proteins	296
4.3	Cyclophilins	297
5	T-DNA integration	297
5.1	Integration products	279
5.2	The role of VirD2 in T-DNA integration	298
6	Plant genetic engineering	299
6.1	<i>Agrobacterium</i> virulence proteins help preserve T-DNA structure	299
6.2	“Agrolistic” transformation	299
6.3	Use of the VirD2 omega mutant to create marker-free transgenic plants	300
6.4	Efficient transgene targeting by homologous recombination is still elusive in plants	300
7	Acknowledgments	301
8	References	301

Chapter 9 Translocation of oncogenic T-DNA and effector proteins to plant cells

1	Introduction	316
2	A historical overview	316
2.1	Discovery of the VirB/D4 transfer system	317
2.2	Renaming the mating pore as a type IV translocation channel	318
3	<i>A. tumefaciens</i> VirB/D4 secretion substrates	320
3.1	T-DNA processing and recruitment to the VirB/D4 channel	320
3.2	Processing and recruitment of protein substrates	322
3.3	Secretion signals	324
3.4	Inhibitors of VirB/D4-mediated substrate translocation	325
4	The VirB4/D4 machine	326
4.1	Energetic components	326
4.1.1	VirD4	326

4.1.2	VirB11	327
4.1.3	VirB4	328
4.2	Inner-membrane translocase components	329
4.2.1	VirB6	329
4.2.2	VirB8	329
4.2.3	VirB10	330
4.2.4	VirB3	330
4.3	Periplasmic/outer-membrane channel components	330
4.3.1	VirB1	331
4.3.2	VirB5	331
4.3.3	VirB2	332
4.3.4	VirB7	332
4.3.5	VirB9	333
5	VirB/D4 machine assembly and spatial positioning	333
5.1	A VirB/D4 stabilization pathway	334
5.2	Polar localization of the T-DNA transfer system	334
5.3	Latter-stage reactions required for machine assembly and substrate transfer	336
5.3.1	VirB4 and VirB11 mediate T-pilus assembly	337
5.3.2	VirD4 and VirB11 induce assembly of a stable VirB10-VirB9-VirB7 channel complex	337
5.4	Interactions among the VirB/D4 T4S subunits	338
6	VirB/D4 channel/pilus architecture	339
7	T-DNA translocation across the cell envelope	341
7.1	Substrate recruitment to the T4S system	342
7.2	Transfer to the VirB11 hexameric ATPase	342
7.3	Transfer to the integral inner membrane proteins VirB6 and VirB8	343
7.4	Transfer to the periplasmic and outer-membrane-associated proteins VirB2 and VirB9	344
7.5	The transfer route	344
7.6	More jobs than two?	346
8	The <i>Agrobacterium</i> -plant cell interface	347
8.1	Environmental factors	348
8.2	Roles of the T-pilus and plant receptors	349
9	Summary and perspectives	350
10	Acknowledgments	352
11	References	352

Chapter 10 Intracellular transport of *Agrobacterium* T-DNA

1	Introduction	365
2	Structure and function of the T-complex	367
2.1	Structural requirements for T-complex subcellular transport	367
2.2	T-complex formation	369
2.3	The T-complex's three-dimensional structure	370
2.4	Protection from host-cell nucleases	371
3	Cytoplasmic transport	372
4	Nuclear import	374
4.1	Function of bacterial proteins in the nuclear import of T-complexes	375
4.2	Interactions of the T-complex with the host nuclear-import machinery	376
4.3	Regulation of T-DNA nuclear import	379
5	Intranuclear movement of the T-complex	381
6	From the cytoplasm to the chromatin: a model for T-complex import	382
7	Future prospects	384
8	Acknowledgments	384
9	References	385

Chapter 11 Mechanisms of T-DNA integration

1	Introduction	396
2	The T-DNA molecule	397
3	Proteins involved in T-DNA integration	398
3.1	The role of VirD2 in the integration process	398
3.2	The role of VirE2 in the integration process	400
3.3	The role of host proteins in the integration process	401
3.3.1	A lesson learnt from yeast	402
3.3.2	Plant proteins	403
4	Genomic aspects of T-DNA integration/target-site selection	408
4.1	T-DNA integration at the gene level	409
4.2	T-DNA integration at the chromosome level	412
4.3	The chromatin connection	415
4.4	Who makes the cut?	417
4.5	Target-site selection—a peek “over the fence”	419
5	Models for T-DNA integration	420
5.1	The single- and double-stranded T-DNA integration models	420

5.2. The microhomology-based T-strand integration model	423
5.3 A model for double strand T-DNA integration into double strand breaks	425
6 Future directions	428
7 Acknowledgments	429
8 References	429

Chapter 12 *Agrobacterium tumefaciens*-mediated transformation: patterns of T-DNA integration into the host genome

1 Introduction	442
2 T-DNA integration mechanism: successive steps leading to stable integration of the T-DNA into the plant host genome	443
2.1 T-DNA integration can be a serious bottleneck to obtaining transgenic plants with a high efficiency	444
2.2 T-DNA integration: involvement of bacterial and plant host factors	446
2.3 The molecular mechanism that drives T-DNA integration: illegitimate recombination	448
2.4 T-DNA integration: single-stranded gap repair (SSGR) vs. double-stranded break repair (DSBR) models	448
2.4.1 SSGR model	449
2.4.2 DSBR model	452
2.5 T-DNA integration: involvement of DSBR via non-homologous end joining (NHEJ)	453
3 Patterns of T-DNA integration into the host genome	458
3.1 Distribution of T-DNA inserts	458
3.2 T-DNA integration results in a transgene locus that is either simple or complex	460
3.3 T-DNA integration can result in truncated T-DNA inserts	461
3.4 T-DNA integration can result in multicopy T-DNA loci	462
3.5 Transformation conditions may influence the number of integrated T-DNAs	465
3.6 Integration of vector backbone sequences	466
3.7 Rearrangements of the host genomic locus as a result of T-DNA integration	467
4 Acknowledgments	469
5 References	469

Chapter 13 Function of host proteins in the *Agrobacterium*-mediated plant transformation process

1	Introduction	484
2	A genetic basis exists for host susceptibility to <i>Agrobacterium</i> -mediated transformation	485
3	The plant response to <i>Agrobacterium</i> : steps in the transformation process, and plant genes/proteins involved in each of these steps	488
3.1	Bacterial attachment and biofilm formation	489
3.1.1	Enhancement of plant defense signaling can result in decreased <i>Agrobacterium</i> biofilm formation	491
3.1.2	T-DNA and virulence protein transfer: a putative receptor for the <i>Agrobacterium</i> T-pilus	491
3.2	T-DNA cytoplasmic trafficking and nuclear targeting	493
3.2.1	Interaction of the T-complex with other proteins in the plant cytoplasm	498
3.2.2	Does the T-complex utilize the plant cytoskeleton for intracellular trafficking?	499
3.3	“Uncoating” the T-strand in the nucleus	500
3.4	Proteins involved in T-DNA integration	501
3.4.1	Role of “recombination” proteins in T-DNA integration	504
3.4.2	Role of chromatin proteins in <i>Agrobacterium</i> -mediated transformation	505
3.4.3	Over-expression of some “rat” genes may alter transgene expression	506
4	Conclusions	507
5	Acknowledgments	508
6	References	508

Chapter 14 The oncogenes of *Agrobacterium tumefaciens* and *Agrobacterium rhizogenes*

1	Introduction	524
2	The <i>A. tumefaciens</i> oncogenes	525
2.1	<i>iaaM</i> , <i>iaaH</i> and auxin synthesis	525
2.2	<i>ipt</i> and cytokinin synthesis	528
2.3	Gene 6b	530
2.4	Gene 5	531
2.5	Other <i>A. tumefaciens</i> oncogenes	531

2.6	Tumorigenesis and hormone interactions	532
3	The <i>A. rhizogenes</i> oncogenes	533
3.1	<i>rolA</i>	534
3.2	<i>rolB</i>	535
3.3	<i>rolB_{TR}</i> (<i>rolB</i> homologue in <i>T_R</i> -DNA)	537
3.4	<i>rolC</i>	538
3.5	<i>rolD</i>	540
3.6	ORF3n	541
3.7	ORF8	541
3.8	ORF13	543
3.9	Other <i>A. rhizogenes</i> T-DNA genes	544
3.10	Plant homologues to Ri genes	545
3.11	Ri T-DNA genetic interactions	546
4	Conclusions	549
5	References	550

Chapter 15 Biology of crown gall tumors

1	Introduction	566
2	Crown gall vascularization	567
3	Oncogenic-induced phytohormone cascade	570
3.1	Auxin	570
3.1.1	Regulation of auxin accumulation	572
3.1.2	Enhancement of tumor induction by host plant auxin	574
3.2	Cytokinins	574
3.3	Ethylene	575
3.4	Abscisic acid	576
3.5	Jasmonic acid	578
3.6	Interactive reactions of JA, IAA, CK, ethylene and ABA	578
4	Enhancement of water and solute transport	579
4.1	Water transport	579
4.2	Regulation of inorganic nutrient accumulation	580
4.3	Phloem transport and symplastic unloading	582
5	Kinetics and function of the sugar-cleaving enzymes sucrose synthase, acid cell wall and vacuolar invertase	584
6	Conclusions	584
7	Acknowledgments	585
8	References	585

Chapter 16 The cell-cell communication system of <i>Agrobacterium tumefaciens</i>	
1 Introduction	594
2 A model of quorum sensing in <i>A. tumefaciens</i>	595
2.1 Regulation of <i>tra</i> gene expression	596
2.2 Antiactivators of TraR activity: TraM and TraR	598
2.3 Regulation of TraR activity through OOHL turnover	601
3 Structure and function studies of TraR	603
4 TraR in transcription activation	608
4.1 Activation of the Ti plasmid conjugation genes	608
4.2 Activation of the Ti plasmid vegetative replication genes	610
4.3 TraR-OOHL interactions with RNA polymerase	612
5 Quorum sensing in tumors and infected plants	613
6 Acknowledgments	614
7 References	615
Chapter 17 Horizontal gene transfer	
1 Introduction	624
2 Footprint of horizontal gene transfer from <i>Agrobacterium</i> to tobacco plants	624
2.1 Cellular T-DNA (cT-DNA) in wild plants of tree tobacco, <i>Nicotiana glauca</i>	624
2.2 cT-DNA is present in quite a few species of the genus <i>Nicotiana</i>	627
2.3 Phylogenetic analysis of cT-DNA genes and their evolution	629
2.4 Expression of the oncogenes on the cT-DNA	631
2.5 Function of the oncogenes on the cT-DNA	633
3 Other cT-DNAs	634
3.1 cT-DNAs outside of the genus <i>Nicotiana</i>	634
3.2 Presence of cT-DNA originating from pTi T-DNA	635
4 Genetic tumors	635
4.1 Genetic tumors on interspecific hybrids in the genus <i>Nicotiana</i>	635
4.2 Are cT-DNA genes related to genetic tumor formation?	637
5 Advantage of cT-DNA and creation of new species	639
6 Acknowledgments	642
7 References	642

Chapter 18 *Agrobacterium*-mediated transformation of non-plant organisms

1	Introduction	650
2	Non-plant organisms transformed by <i>Agrobacterium</i>	652
3	Experimental aspects of <i>Agrobacterium</i> -mediated transformation of non-plant organisms	656
3.1	<i>Agrobacterium</i> strains	656
3.2	Requirement of acetosyringone	656
3.3	Effect of co-cultivation conditions	657
3.4	Markers used for <i>Agrobacterium</i> -mediated transformation	658
4	Role of virulence proteins in the <i>Agrobacterium</i> -mediated transformation of non-plant organisms	658
4.1	Chromosomally-encoded virulence proteins	658
4.2	Ti-plasmid encoded virulence proteins	659
5	Targeted integration of T-DNA	659
6	Protein transfer from <i>Agrobacterium</i> to non-plant hosts	664
7	Prospects	664
8	Acknowledgments	666
9	References	666

Chapter 19 The bioethics and biosafety of gene transfer

1	Introduction	678
1.1	Responding to biosafety concerns: regulation	679
1.1.1	Product-based regulation	680
1.1.2	Process-based regulation	680
1.2	Risk analysis	682
1.2.1	Food safety risk assessment	683
1.2.2	Environmental risk assessment	684
2	Which risks are relevant?	685
2.1	The risk window	686
2.1.1	What risks associated with GM crops have scientists judged relevant?	686
2.1.2	The risk window has changed with new regulation	687
2.1.3	Scientists sometimes have different values—the MON 863 maize example	688
3	Concerns beyond risk assessment	689
3.1	Usefulness	690

3.2	Other socioeconomic issues	691
3.3	The consumer's right to choose—co-existence	691
3.4	Other moral concerns	693
3.4.1	Ethical criteria	694
4	Conclusions	694
5	Acknowledgments	695
6	References	695

Chapter 20 *Agrobacterium*-mediated gene transfer: a lawyer's perspective

1	Introduction—Why should a scientist care about a lawyer's view of <i>Agrobacterium</i> ?	700
1.1	Commercialization of research results	701
1.2	Advantages for scientific research	703
1.3	The myth of the “experimental use exception”	704
1.4	Freedom-to-commercialize and anti-commons problems	707
2	Some basics about patents	709
2.1	Claims define the “metes and bounds” of protection	709
2.2	A patent application is not a patent	711
2.3	Parts of a patent document	711
3	<i>Agrobacterium</i> -mediated transformation and patent law	713
3.1	Vectors for transformation	716
3.1.1	Patents on binary vectors and methods	716
3.1.2	Patents on co-integrated vectors	719
3.2	Tissue types for transformation	720
3.2.1	Callus transformation	720
3.2.2	Immature embryo transformation	721
3.2.3	<i>In planta</i> transformation	721
3.2.4	Floral transformation	721
3.2.5	Seed transformation	722
3.2.6	Pollen transformation	723
3.2.7	Shoot apex transformation	723
3.2.8	Summary	723
3.3	Patents on transformation of monocots	724
3.3.1	General methods for transforming monocots	725
3.3.2	Gramineae and cereals	726
3.4	Patents on transformation of dicots	727
3.4.1	General transformation methods	727
3.4.2	Transformation of cotton	728
3.5	<i>Agrobacterium</i> and Rhizobiaceae	731

