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RESUMEN 

La inflamación es una repuesta fisiológica benéfica para la reparación de tejidos, sin embargo, 

cuando se produce de forma no controlada, puede llevar a la degeneración del tejido, asi como 

el desarrollo de enfermedades como aterosclerosis, hepatitis crónica, colitis, fibrosis pulmonar, 

psoriasis y artritis reumatoide, ya que este proceso descontrolado ha sido considerado como su 

mecanismo patogénico básico. Con base en la evidencia acumulada se ha establecido la 

correlación entre la biosíntesis de leucotrienos, un tipo de mediadores inflamatorios de 

naturaleza lipídica, y algunas de estas enfermedades, convirtiendo a la dioxigenasa 5-

lipoxigenasa, una enzima clave en la biosíntesis de leucotrienos, en una diana biológica de 

gran interés  

Actualmente, el único inhibidor de la enzima 5-lipoxigenasa en el mercado es el fármaco 

zileuton, cuyo uso es limitado por presentar hepatotoxicidad y un perfil farmacocinético pobre, 

requiriendo múltiples dosis diarias. Lo anterior enfatiza la necesidad de buscar y desarrollar 

nuevos, y más eficientes, inhibidores de 5-lipoxigenasa para el tratamiento de enfermedades 

relacionadas con la inflamación. 

En el presente trabajo se empleó -tocotrienol, un componente del complejo conocido como 

vitamina E que ha demostrado la capacidad de inhibir la enzima 5-lipoxigenasa y disminuir la 

producción de leucotrienos, como material de partida para el desarrollo de nuevas entidades 

químicas por medio de la funcionalizaión de la cadena lateral, así como la hibridación con 

estructuras de productos naturales de distintas clases con actividad antiinflamatoria. Los 

compuestos obtenidos por procesos semisintéticos incluyeron derivados de tocotrienol 

epoxidados en la cadena lateral y derivados con cadenas laterales de distintas longitudes. 

Mientras que los nuevos híbridos obtenidos poseen estructuras de tipo chalcona, retrochalcona, 

3-fenilcumarina, flavanona, flavona y aurona preniladas. Asimismo, se reporta la suceptibilidad 

de los derivados de tipo chalcona y retrochalcona prenilados a sufrir diversas transformaciones 

como consecuencia de su exposición a la luz, y la influencia de factores como la sustitución y 

disolventes utilizados en los procesos y productos generados. 

En cuanto al potencial antiinflamatorio de los derivados por medio de la inhibición de la enzima 

5-lipoxigenasa, se realizó la exploración por modelamiento de las interacciones proteína-

ligando con base en acoplamiento molecular, llevando a la selección de candidatos para futuros 

estudios. 
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ABSTRACT 

Inflammation is a benefic physiologic response for tissue repair; however, uncontrolled 

inflammatory reactions could lead to tissue degeneration, also development of diseases such as 

atherosclerosis, chronic hepatitis, colitis, pulmonary fibrosis, psoriasis, and rheumathoid 

arthritis, since this type of processes have been considered as their basic pathogenic 

mechanism. Based on the available data, correlation between leukotriene production and some 

of previously mentioned diseases has been stablished, thus 5-lipoxigenase, a key enzime for 

biosynthesis of this class of mediators, becoming an important biological target. 

Currently, zileuton represents the only 5-lipoxigenase inhibitor in the market; however, clinical 

application is limited because of its hepatotoxicity and poor pharmacokinetic profile, which 

requires multiple doses per day. These facts emphasize the need for searching and developing 

new, and more efficient, 5-lypoxigenase inhibitors for the treatment of inflammation-related 

diseases. 

In the present work -tocotrienol, a member of vitamin E capable of inhibit 5-lipoxigenase and 

decrease leukotriene production, was employed as starting material for the synthesis of new 

chemical compounds via side chain functionalization, and hybridization with scaffolds of 

different natural product classes with anti-inflammatory activity. Compounds obtainded by 

semisynthetic processes included tocotrienol derivatives with truncated or oxirane moiety 

inserted into side chain. Novel hybrids mixing natural product scaffolds yielded prenylated 

chalcone, retrochalcone, 3-phenylcoumarin, flavanone, flavone, and aurone type deriatives. In 

addition, susceptibility of prenylated chalcone and retrochalcone derivatives to suffer light-driven 

phototransformations was investigated, and the influence of solvent and substitution on these 

processes and their outcome are discussed.   

For exploration of anti-inflammatory potential, 5-lipoxigenase inhibition was assessed based on 

molecular docking results of derivatives, this analysis allowed the selection of candidates for 

further studies.  

 

 

 


