

CONTENTS

PREFACE	1
INTRODUCTION	3
CHAPTER ONE: THE MASTER ELEMENTS OF CONTROL	13
Components of the Switch	16
DNA	16
RNA Polymerase	17
The Repressor	17
Cro	19
The Action of Repressor and Cro	20
Negative Control	20
Positive Control	20
Cooperativity of Repressor Binding	22
Induction—Flipping the Switch	24
Cooperativity—Switch Stability and Sensitivity	27
The Effect of Autoregulation	30
Other Cases	30
CHAPTER TWO: PROTEIN-DNA INTERACTIONS AND GENE CONTROL	33
The Operator	33
Repressor	35
Cro	39
Amino Acid-Base Pair Interactions	41
The Promoter	44
Gene Control	45

CHAPTER THREE: CONTROL CIRCUITS—SETTING THE SWITCH

49

A Brief Overview of λ Growth 50

The Genetic Map 50

Circularization 51

Gene Expression 52

Very early

Early

Late

Integration 53

Control of Transcription 54

Very Early 54

Early 54

Late Lytic 56

Late Lysogenic 57

The Decision 58**Control of Integration and Excision 59**

Case 1—Establishing Lysogeny 59

Case 2—Lytic Growth 60

Case 3—Induction 61

Other Phages 61**The SOS Response 62** **λ Pathways and Cell Development 63**

Regulatory Genes 63

Switches 65

Patterns of Gene Expression 66

Mechanisms 66

CHAPTER FOUR: HOW DO WE KNOW—THE KEY EXPERIMENTS

69

The Repressor Idea 69

Clear and Virulent Mutants 69

Observations

Explanation

Immunity and Heteroimmunity 70

Observations

Explanation

Asymmetry in Bacterial Mating 72

Observations

Explanation

The Repressor Problem in the Early 1960s 73**Repressor Isolation and DNA-binding** 74**Making More Repressor** 76**The Claims of Chapters One and Two** 77

The repressor is composed of two globular domains held together by a linker of some 40 amino acids 77

The repressor dimerizes, largely through interaction between its carboxyl domains 79

A repressor dimer binds, through its amino domains, to a 17 base pair operator site 79

A single operator binds one dimer of repressor

Dimers form before DNA binding

The amino domains contact DNA

There are three 17 base pair repressor binding sites in the right operator. At each site repressor and Cro bind along the same face of the helix 85

Chemical probes

Operator mutations

Binding to supercoiled and linear DNA

Repressor binds to three sites in O_R with alternate pairwise cooperativity. The cooperativity is mediated by interactions between carboxyl domains of adjacent dimers 87

In a lysogen repressor is typically bound to O_R1 and O_R2 . The bound repressors turn off rightward transcription of *cro* and stimulate leftward transcription of *cl*. At higher concentrations, repressor binds to O_R3 to turn off transcription of *cl* 88

Cro binds first to O_R3 , then to O_R1 and O_R2 , thereby first turning off P_{RM} , then P_R 93

Some background about Cro

Cro *in vivo*

Cro *in vitro*

RecA cleaves repressor to trigger induction 96

When Cro is bound at O_R3 the switch is thrown 97

Repressor and Cro bind to the operator as shown in Figures 2.6, 2.8, and 2.10 97

Crystallography

The 'helix swap' experiment

The role of the arm of λ repressor

Specific amino acid-base pair contacts

Repressor activates transcription of <i>cI</i> by binding to O_{R2} and contacting polymerase with its amino domain	101
Positive control mutants	
Positive control <i>in vitro</i>	
Conclusion	104
<hr/>	
Appendix One: Designing an Efficient DNA-binding Protein	109
Synopsis	109
Specific and Non-specific Binding	109
Increasing Specificity	111
Increasing protein concentration	
Improving specificity directly	
Using cooperativity	
DNA-Protein Interaction in Eukaryotes	114
<hr/>	
Appendix Two: Strong and Weak Interactions	117
<hr/>	
Appendix Three: Control of Transcription in Eukaryotes and Prokaryotes—A Common Mechanism	119

CHAPTER FOUR: HOW DO WE KNOW—THE KEY EXPERIMENTS	
The Repressor logo	69
Observations	
Explanation	
Immunay and Heterokaryon	70
Observations	
Explanation	
Asymmetry in Bacterial Mating	72
Observations	
Explanation	