

Contents

Chapter 1.	BASIC PRINCIPLES OF MICROBIAL GENETICS	1
	1.1 Introduction	
	1.2 Basic procedures and terminology	
	1.3 Crosses involving spore colour in <i>Aspergillus nidulans</i>	
	1.4 Crosses involving colony size in <i>Saccharomyces cerevisiae</i>	
	1.5 Crosses involving plaque morphology in bacteriophages	
	1.6 Crosses involving bacteria	
	1.7 Types of mutant microbes	
	1.8 Visible mutants	
	1.9 Biochemical mutants	
	1.10 Resistant mutants	
	1.11 Conditional lethal mutants	
	1.12 Miscellaneous mutants	
	1.13 Classification of mutation	
	1.14 Mutation and the gene product: allelism	
	1.15 Classification of phenotypes	
	1.16 Genetic maps	
	1.17 The complementation test	
	1.18 Gene terminology	
	1.19 Interallelic complementation	
	1.20 The cis-trans test: the cistron	
	1.21 One gene-one polypeptide theory	
Chapter 2	CONSTRUCTION OF GENETIC MAPS AND THE GENETIC CODE	27
	2.1 Introduction	
	2.2 Two-point and three-point crosses	
	2.3 Selective systems for mapping	
	2.4 Mapping by deletion analysis	
	2.5 The code for protein synthesis	
	2.6 Base sequencing of viruses and genes	
	2.7 Heteroduplex analysis	
	2.8 Mapping with restriction endonucleases	
	2.9 Gene localization	

Chapter 3.	ASPECTS OF FUNGAL GENETICS	45
	3.1 Introduction	
	3.2 Tetrad analysis in <i>Sordaria fimicola</i>	
	3.3 Mapping of the centromere distance for the hyaline mutation	
	3.4 Abnormal asci	
	3.5 Mechanism of gene conversion	
	3.6 A mechanism for recombination	
	3.7 Polarity of gene conversion	
	3.8 Tetrad analysis of unordered asci	
	3.9 Mathematical aspects of recombination	
	3.10 Interference between chiasmata	
Chapter 4.	THE PARASEXUAL CYCLE IN FUNGI	59
	4.1 Introduction	
	4.2 Evidence for the occurrence of diploids	
	4.3 Basic principles of the parasexual cycle	
	4.4 Applications of the parasexual cycle	
	4.5 Mapping of gene order and centromere location	
	4.6 Phialide analysis in <i>Verticillium albo-atrum</i>	
	4.7 Analysis of a translocation	
	4.8 Other applications of diploids	
	4.9 Occurrence of the parasexual cycle	
	4.10 Industrial applications of the parasexual cycle	
Chapter 5	GENETIC ANALYSIS OF FUNGAL GROWTH	78
	5.1 Introduction	
	5.2 Genetic analysis of DNA synthesis and the duplication cycle in filamentous fungi	
	5.3 Detection of the genetic loci for tubulin synthesis	
	5.4 Genetic approaches to the study of growth and wall synthesis	
Chapter 6.	RECOMBINATION IN BACTERIA	88
	6.1 Discovery of conjugation	
	6.2 Discovery of the sex factor	
	6.3 Types of <i>Escherichia coli</i> strains	
	6.4 Mapping chromosomes by conjugation (interrupted mating)	
	6.5 Genetic map of the sex factor	
	6.6 Features of other plasmids	
	6.7 Relationships between plasmids	
	6.8 Transformation in bacteria	
	6.9 Transduction	

Chapter 7.	GENETIC ANALYSIS OF BACTERIOPHAGES	108
	7.1 Virulent bacteriophages	
	7.2 Temperate bacteriophages	
	7.3 Genetic maps in the bacteriophages	
	7.4 Genetic analysis of T4	
	7.5 Chromosome structure of T4	
	7.6 Genetic analysis of phage lambda, λ	
	7.7 Integration of the λ chromosome	
	7.8 Origin of transducing phages	
	7.9 Genetic basis of lysogeny	
	7.10 Gene expression in the lytic cycle	
	7.11 Regulation of lysogeny	
Chapter 8.	REPAIR, MUTATION AND RECOMBINATION IN BACTERIA	127
	8.1 Introduction	
	8.2 Survey of repair, mutation and recombination	
	8.3 Repair of DNA and UV-induced mutation	
	8.4 The genetics of recombination in bacteria and phages	
	8.5 DNA gyrase and DNA unwinding	
Chapter 9.	IN VIVO AND IN VITRO GENETIC MANIPULATION	138
	9.1 Introduction	
	9.2 Somatic-cell genetics	
	9.3 Crosses between different bacteria	
	9.4 Mutation via Mu1 phage and insertion sequences	
	9.5 Purification of the "lac" operon	
	9.6 Basis of restriction and modification	
	9.7 Application of restriction-endonucleases	
	9.8 Purification and analysis of plasmid DNA	
	9.9 Use of endonucleases in mapping DNA molecules	
	9.10 Construction of recombinant DNA	
	9.11 Transformation or transfection of recombinant DNA	
	9.12 Construction of suitable vectors	
	9.13 Basic procedures involved in a recombinant DNA experiment	
	9.14 Public concern with safety	
Chapter 10.	MITOCHONDRIAL GENETICS AND EUKARYOTIC TRANSFORMATION	154
	10.1 Introduction	
	10.2 Extrachromosomal inheritance in yeast	

10.3	Mapping of the mitochondrial genome	149
10.4	The coding capacity of the mitochondrial genome	149
10.5	Transformation at high frequency in yeast	149
Chapter 11.	THE GENETICS OF <i>STREPTOMYCETES</i>	166
11.1	Introduction	
11.2	Detection of recombination in <i>S. coelicolor</i>	
11.3	Mapping of a gene in an SCP1 × SCP1 ⁻ cross	
11.4	Origin and applications of heteroclones	
11.5	Recent developments in <i>S. coelicolor</i> genetics	
11.6	Genetic analysis of antibiotic-producing <i>Streptomyces</i>	
REFERENCES		176
INDEX		188