

PREFACE TO FIRST EDITION	xiii
PREFACE TO FOURTH EDITION	xv
PART 1	
BASIC FUNGAL BIOLOGY	1
1 AN OUTLINE OF THE BIOLOGY OF FUNGI OF GENETIC INTEREST	3
General features of fungi	3
Vegetative organization—free cells versus mycelium	3
Basic features of sexual reproduction	4
Heterokaryosis	5
Nutrition	6
Some important groups and species	6
Phycomyctes	6
Ascomyctetes	12
Basidiomycetes	24
Fungi Imperfici	32
2 THE FUNGAL NUCLEUS	34
Components of the non-dividing nucleus	34
Replication of chromosomal DNA	37
Quantity of DNA per haploid genome	37
Spindle fibres and spindle plaques	37
Nucleolus in nuclear division	39
Chromosomes in meiosis	39
Chromosomes in mitosis	45
PART 2	
GENETIC ANALYSIS	49
3 INDUCTION, ISOLATION AND CHARACTERIZATION OF MUTANTS	51
Visible and biochemical mutants	52
Methods for isolating and characterizing auxotrophic mutants	55
Total isolation procedures	55
'Rescue' methods	59
Filtration enrichment	62
Starvation selection and unbalanced growth	63
Selective elimination of prototrophs by antibiotics and other drugs	65
Radioactive suicide	66
Mutations from auxotrophy to prototrophy	66
Mutations to drug resistance	68
Systems for two-way mutant selection	69
Recessive lethal mutations	70
Replicating instabilities	71

4 THE CLASSIFICATION OF MUTANTS AND THE DEFINITION OF GENES	73
Complementation tests	74
Heterokaryosis	74
Diploidy	76
Pseudowild types as a proof of complementation	77
Cis-trans test	78
Diploids compared with heterokaryons	79
Partial complementation and complementation mapping	80
Linear and non-linear complementation maps	80
Frequency of complementing mutants	82
Significance of complementation between alleles	83
Identification of genes by complementation mapping of deletions	84
5 CHROMOSOME MAPPING BY MEIOTIC ANALYSIS—TETRAD ANALYSIS	88
Unordered and ordered tetrads	89
Segregation and tetrad types	89
Ordered tetrads—centromeres and their random orientation	90
Free reassortment linkage and crossing-over	92
Criteria for linkage versus independent assortment	94
Evidence for linkage in random spores and tetrads	94
Map distance and gene order	96
Calculation of map distance	96
Principle of minimal cross-overs	97
Mapping with random spores—selective scoring of recombinants	98
Unordered tetrads	99
Double crossing-over and its consequences	100
Strand relationships between adjacent crossovers	100
Interference between crossovers	105
True map distance and mapping functions	107
Correcting map distance for double crossovers	108
Linkage maps in various fungal species	111
6 GENETIC ANALYSIS BASED ON MITOSIS	122
Selection of diploid strains in habitually haploid fungi	122
Analysis of haploid and diploid segregants from diploid <i>Aspergillus</i>	124
Mitotic crossing-over and haploidization as causes of vegetative segregation	125
Mitotic analysis in other fungi	130
Demonstrations that mitotic crossing-over is a reciprocal event	131
Random chromosome loss—the cause of haploidization	134
Comparison of mitotic with meiotic mapping	135
Parasexual cycle as an alternative to sex in nature	137
7 CHANGES IN CHROMOSOME NUMBER AND STRUCTURE	138
Polyplody	138
Meiosis in autotetraploids	139
Genetics of autotetraploids	140
Triploids	142
Aneuploidy	143
Aneuploidy in <i>Aspergillus nidulans</i>	143
Aneuploidy in <i>Saccharomyces</i>	144

Pseudowild types in <i>Neurospora crassa</i>	146
Structural chromosome changes	149
Methods for detection of structural rearrangements	150
Inversions	150
Reciprocal translocations	152
Non-reciprocal translocations	155
Selective loss of duplicated chromosome segments	158
8 EXTRACHROMOSOMAL INHERITANCE	162
Criteria for extranuclear inheritance	163
Reciprocal differences in crosses and non-mendelian segregation	163
Heterokaryon test, vegetative segregation and invasiveness	165
Nucleus cytoplasm interactions	169
Barrage in <i>Podospora anserina</i>	170
Interspecific interactions in <i>Neurospora</i>	171
psi element in yeast	172
$URE3$ determinant in yeast	173
Induction of extranuclear variation	174
Role of extrachromosomal elements in natural variation	175
Continuous cytoplasmic variation	175
Naturally occurring extranuclear variation at the molecular level	177
9 INCOMPATIBILITY AND BREEDING SYSTEMS	178
Avoidance of self-fertilization	179
Sexual dimorphism	179
Heterothallism: one locus two allele systems	179
Promotion of outbreeding	180
Multiple-allelomorph heterothallism	180
Compound nature of the A and B factors in tetrapolar species	182
Relative efficiencies of different systems as outbreeding mechanisms	185
Secondary homothallism	186
Incompatibility following karogamy spore killers	189
Vegetative incompatibility	190
Non-allelic and allelic incompatibility in <i>Podospora</i>	190
Allelic incompatibility in <i>Neurospora</i> heterokaryons	193
Heterokaryon incompatibility in <i>Aspergillus</i>	194
What is the value of heterokaryon incompatibility?	195
10 RECOMBINATION WITHIN GENES AND FINE STRUCTURE MAPPING	197
Mapping by recombination frequencies	198
Mapping by overlapping small deletions	200
Simple theory of flanking markers and its limitations	202
Gene conversion shown by tetrad analysis	205
Frequencies of conversion	205
Single site versus multisite conversion	206
Relation between conversion and crossing-over—flanking markers reconsidered	207
Polarity in gene conversion	211
Polaron in <i>Ascobolus</i>	211
Polarized conversion in <i>Neurospora crassa</i>	212
Assessment of different methods	215

PART 3	23
GENE STRUCTURE AND GENE ACTION	217
11 MECHANISM OF RECOMBINATION	219
Conversion and crossing-over: aspects of a common mechanism	219
Post-meiotic segregation and the origin of hybrid DNA	220
Post-meiotic segregation	220
Possible origin of heteroduplex DNA	221
Asymmetric or symmetric hybrid DNA formation	225
Correction of mis-matches in heteroduplex DNA	228
Evidence that correction occurs	228
Nature of the correction mechanism	229
Extent of the conversion tract	233
Induction of mitotic gene conversion	234
Polarity in gene conversion	235
Origin of crossovers	237
Meselson and Radding model	238
Crossover interference	241
Genetic control of recombination	242
Recombination and repair of ultraviolet damage	243
Locally specific variation in recombination frequency in wild type strains	248
Conclusions	253
12 MECHANISMS OF MUTATION	254
Classifications of mutations	254
Base-pair substitutions	256
Frameshifts	256
Larger deletions and duplications	257
Spontaneous mutation	258
Frequency	258
Mechanism of spontaneous mutation	260
Chemical mutagenesis	261
Base analogues	261
Nitrous acid	262
Hydroxylamine and related compounds	264
Alkylating agents	265
Acridine compounds	266
Classification of mutants by use of chemical mutagens	268
Yield of mutants versus dose of mutagen	269
Physical mutagens	270
Heat	270
X-rays	270
Ultraviolet light	271
DNA repair and its role in mutagenesis	274
Radiation sensitive mutants in fungi	275
Conversion of single-strand mutations to double-strand mutations	278
Differences between genetic sites in mutability	279
Within-gene effects	279
Between-gene effects	280
Special sensitivity at time of replication	281

13 GENETIC CONTROL OF METABOLISM	282
Analysis of auxotrophs	283
Nutritional tests	283
Accumulation of intermediates	285
Absence or alteration of enzymes	287
Metabolic shunts and by-passes	293
Mutations affecting macromolecular synthesis	296
Possible kinds of block in macromolecular synthesis	297
Mutants with defects in DNA replication	298
Mutants with defects in RNA replication	298
Mutants defective in components of the protein synthesizing system	299
Cell surface antigenic polysaccharides	302
Mutants affected in utilization of major nutrients	302
Nitrogen sources	303
Carbon sources	306
Phosphate nutrition	309
Respiratory deficiencies	311
Mutants resistant to toxic substances	312
Transport mutants	312
Mutational blocks in toxic metabolism	315
Resistance of the target molecules	316
Pigmentation mutants	318
14 GENES AND MACROMOLECULES	320
Genetic determination of amino acid sequence in proteins	320
<i>cyc-1</i> , the gene for iso-1-cytochrome c in yeast	321
<i>am</i> , coding for NADP-specific glutamate dehydrogenase of <i>Neurospora</i>	323
Mis-sense mutants	326
Intra-gene suppression	327
Chain-terminating mutations	332
Chain initiation mutants	334
Suppressors—mutations in genes for transfer RNA	336
Different kinds of suppressors	336
Nonsense suppressors	337
Assignment of supersuppressors to genetic loci and tRNA species	339
Suppression of mis-sense	342
Involvement of molecules other than tRNA in translational suppression	344
Genes and higher-order protein structure	345
Effects of mutation on conformation and allosteric properties	345
Allelic complementation in enzyme formation	348
Molecular nature of dominance	353
Complex enzymes	353
Multifunctional enzymes of dual genetic determination	363
Genes for tRNA and rRNA	367
Transfer RNA	368
Ribosomal RNA	369
Messenger RNA	372
15 REGULATION OF PROTEIN SYNTHESIS	374
Principles of regulation	374
Regulatory systems in prokaryotes	374

13	Evidence for regulation of transcription in fungi	376
	Regulator genes	377
12	Regulation in catabolic and anabolic pathways	379
	General regulation of nitrogen catabolism	380
11	Nitrogen sources	385
	Arginine	391
10	Biosynthesis of other amino acids	395
	Possible involvement of biosynthetic enzymes as regulatory proteins	399
9	Regulation of carbon catabolism	401
	Regulation of the respiratory apparatus	401
8	Genes involved in carbon catabolite repression	402
	Special carbon-catabolic pathways	404
7	Sulphur nutrition in <i>Neurospora</i>	409
6	Regulation of phosphate nutrition	410
5	Multiple controls of single enzymes	412
4	'Hard times' enzyme	413
3	11	10
2	10	9
1	11	10
16	GENETIC CONTROL OF VEGETATIVE GROWTH AND DEVELOPMENT	416
	Control of mycelial morphology and cell wall structure	417
	Enzymes of the pentose phosphate cycle in morphological mutants	417
	Cell wall abnormalities	419
	Probable effects on membrane structure	420
	Differentiation of conidia	421
	Circadian rhythm	422
	Tropic responses	424
	Cell cycle mutants in <i>Saccharomyces</i>	426
	Nuclear cycle and mycelial extension in <i>Aspergillus</i>	429
	12	11
	10	9
	8	7
	6	5
	4	3
17	GENETIC CONTROL OF SEXUAL DEVELOPMENT	431
	Sexual dimorphism	432
	Heterothallism with two mating types	433
	Yeast mating types and other labile systems	434
	Biochemistry of mating type in <i>Hansenula</i>	435
	Biochemistry of mating types in <i>Saccharomyces</i>	436
	Genetics of mating type in <i>Saccharomyces</i>	437
	Genetics of mating type in <i>Schizosaccharomyces</i>	441
	<i>a</i> locus in <i>Ustilago violacea</i>	446
	Mating-type switching in <i>Chromocrea</i>	447
	Functions of the mating type loci in tetrapolar species of Basidiomycetes	447
	Analysis of mating type functions by mutation	449
	Mechanism of allelic interaction in multiple-allele systems	454
	Mutational blocks in sexual development	454
	<i>Glomerella cingulata</i>	455
	<i>Sordaria species</i>	456
	Determination of sporulation in yeast	458
	Mutations causing abnormalities of development	459
	Effects on ascus and ascospore development in <i>Neurospora</i>	459
	Pigment mutants as markers for normal development	460
	13	12
	11	10
	9	8
	7	6
	5	4

PART 4

DIRECT STUDY OF THE GENETIC MATERIAL	463
18 MITOCHONDRIAL GENETICS	465
General features of mitochondria	465
Functions of mitochondrial DNA	467
Mitochondrial genetic markers	469
Respiratory deficiency	469
Mutants deficient in specific respiratory chain components	472
Antibiotic resistance	473
Assignment of mutations to genes	474
Patterns of recombination of mitochondrial markers	475
Polarity phenomenon and the mechanism of recombination	476
Mapping the mitochondrial genome	480
Recombination analysis	481
Co-retention of markers after petite deletions	483
Assessment of homologies by DNA-DNA hybridization	483
Restriction endonuclease mapping	485
Identification of genes by hybridization with their RNA products	485
<i>Schizosaccharomyces pombe</i>	487
Mitochondrial genetics of filamentous fungi	488
<i>Neurospora crassa</i>	488
<i>Aspergillus nidulans</i>	489
19 EXTRAMITOCHONDRIAL EXTRACHROMOSOMAL INHERITANCE—PLASMIDS, EPISOMES AND VIRUSES	492
‘Two micron’ DNA of <i>Saccharomyces</i>	492
Other evidence for transposable genes	497
Transformation and an ‘exosome’ in <i>Neurospora</i>	499
‘Killer’	500
20 CLONING OF GENES FOR DIRECT CHEMICAL ANALYSIS	505
General requirements for cloning	506
Techniques for cutting and joining double-stranded DNA	506
Cloning vehicles	508
Introduction of plasmid DNA into the <i>E. coli</i> cell	512
Cloning of yeast and <i>Neurospora</i> genes with defined biochemical functions	512
Complementation of <i>E. coli</i> auxotrophs by yeast and <i>Neurospora</i> DNA sequences	512
Hybrid plasmids carrying yeast genes for tRNA and rRNA	518
Use of nucleic acid ‘probes’ for preliminary enrichment with respect to specific gene sequences	521
Further analysis of cloned DNA segments	522
Possible hazards and their containment	524
APPENDIX: SOME WIDELY USED CULTURE MEDIA	527
GLOSSARY OF GENETICAL TERMS	529
BIBLIOGRAPHY	535
INDEX	611