

Contents

Foreword	v
Availability and demand patterns for fossil hydrocarbons H. R. WARMAN	1
Oil shale and tar sands ANGELO A. MONTAGNA	21
Coal and the human need for energy CARL E. BAGGE	33
Availability and demand patterns for renewable resources—Forestry LENNART G. STOCKMAN	41
Agriculture R. S. LOOMIS	51
Availability and demand patterns for renewable resources: Urban and industrial wastes MICHAEL E. HENSTOCK	63
Future of the synthetic chemical industry in Japan MITSUO YAMAGUCHI	71
Matter: A resource ignored by thermodynamics—Renewable resource economics NICHOLAS GEORGESCU-ROEGEN	79
The reference materials system—a framework for substitution analysis N. K. BHAGAT and K. C. HOFFMAN	89
The organic materials system: Toward making practical choices R. STEPHEN BERRY	99
Climate and its impact on renewable resources F. KENNETH HARE	109
Changing location of the chemical industry PETER H. SPITZ and DR. LAWRENCE H. WEISS	121
Research and management of natural resources DR. RICCARDO GALLI	129
The structure and chemistry of coal: the search for a typical coal molecule SUJIT K. CHAKRABARTTY	137
Synthesis gas technology EBERHARD K. GOEKE and ROLF E. WETZEL	155
Chemicals, feedstocks and fuels from Fischer-Tropsch and related syntheses H. SCHULZ	167
Chemicals production directly from synthesis gas IRVING WENDER	185
Homogeneous catalysis JÜRGEN FALBE	195
Heterogeneous catalysis at the end of the century ROBERT B. ANDERSON	211
Extraction, preparation, transport and storage of solid carbonaceous material ROBERT A. DURIE	219
The liquefaction of solid carbonaceous materials L. E. SWABB, JR., G. K. VICK and T. ACZEL	233
Pyrolysis of solid carbonaceous materials DR. ING. W. EISENHUT	257
Prospects for photon-induced syntheses of organic raw materials MICHAEL J. BERRY	269
Chemicals from tar processing GERD COLLIN	283
Carbons from selected organic feedstocks PHILIP L. WALKER, JR.	299
Peat as a source of chemical raw materials P. I. BELKEVICH, I. I. LISHTVAN, G. P. VIRYASOV and G. V. NAUMOVA	315
Limits to the productive capacity of the biosphere DR. PIETER BURINGH	325
Biomass for non-food use ROSCOE F. WARD, Sc.D., P.E.	333
Tropical biomass systems NORMAN MYERS	343
A new look at natural rubber production B. C. SEKHAR	355
Organic chemicals from the desert E. CAMPOS-LOPEZ and A. ROMÁN ALÉMANY	365
Chemical and biological nitrogen fixation THOMAS A. LARUE	389
Future challenges and opportunities for agricultural and forestry research SYLVAN H. WITTWER	401
Trends in available feedstock composition LUCIEN SAJUS	413

✓ Future feedstocks from petroleum—oil and gas: new petroleum production technologies F. HUGHES	427
New petroleum refining technology VLADIMIR HAENSEL	435
Advances in production of olefins from residual oils TAISEKI KUNUGI, DAIZO KUNII and AKITO KOBAYASHI	449
Tar sands and related products as chemical feedstocks C. W. BOWMAN	457
Oil shales as sources of chemical feedstocks V. A. PROSKURYAKOV and V. I. YAKOVLEV	467
New aspects of the production of chemicals from biomass V. P. KARLIVAN	483
The ethanol based economy—the Brazilian experiment DR. WALTER BORZANI	495
Enzymatic production of chemicals OSKAR R. ZABORSKY	513
✓ Carbohydrates as renewable feedstocks J. COOMBS, R. KHAN, R. C. RIGHELATO and A. J. VLITOS	533
Anaerobic microbial digestion as a route to methane and renewable carbon sources S. J. PIRT	543
✓ Organic chemicals from the sea V. J. CHAPMAN	551
Fibres to meet the world's expanding needs EDWIN C. JAHN	565
Solar energy use through biology—past and future D. O. HALL	579
Photosynthesis and biosynthetic pathways to chemicals J. A. BASSHAM	601
A new understanding of the carbohydrate system R. H. MARCHESSAULT and J. ST-PIERRE	613
✓ The challenge of lignin KNUT KRINGSTAD	627
The future of lipids from plant and animal sources C. BOELHOUWER	637
Genetic engineering of microorganisms for the production of biomedically and industrially important materials HERBERT W. BOYER	649
Index of Contributors	651