

CONTENTS

Preface

Part I Governing Equations

xiii

1 Basic Conservation Laws	3
1-1 Statistical and Continuum Methods	4
1-2 Eulerian and Lagrangian Coordinates	6
1-3 Material Derivative	7
1-4 Control Volumes	8
1-5 Reynolds' Transport Theorem	9
1-6 Conservation of Mass	12
1-7 Conservation of Momentum	14
1-8 Conservation of Energy	17
1-9 Discussion of Conservation Equations	21
1-10 Rotation and Rate of Shear	22
1-11 Constitutive Equations	25
1-12 Viscosity Coefficients	29
1-13 Navier-Stokes Equations	31

1-14 Energy Equation	32
1-15 Governing Equations for Newtonian Fluids	33
1-16 Boundary Conditions	35
Problems	36
2 Flow Kinematics	37
2-1 Flow Lines	37
2-2 Circulation and Vorticity	43
2-3 Stream Tubes and Vortex Tubes	44
2-4 Kinematics of Vortex Lines	46
Problems	48
3 Special Forms of the Governing Equations	49
3-1 Kelvin's Theorem	50
3-2 Bernoulli Equation	53
3-3 Crocco's Equation	55
3-4 Vorticity Equation	58
Problems	60
Further Reading	60
Part II Ideal-Fluid Flow	
Governing Equations and Boundary Conditions	62
Potential Flows	63
4 Two-dimensional Potential Flows	65
4-1 Stream Function	66
4-2 Complex Potential and Complex Velocity	69
4-3 Uniform Flows	71
4-4 Source, Sink, and Vortex Flows	73
4-5 Flow in a Sector	76
4-6 Flow around a Sharp Edge	78
4-7 Flow due to a Doublet	79
4-8 Circular Cylinder without Circulation	82
4-9 Circular Cylinder with Circulation	84
4-10 Blasius' Integral Laws	89
4-11 Force and Moment on a Circular Cylinder	93
4-12 Conformal Transformations	95
4-13 Joukowski Transformation	
4-14 Flow around Ellipses	100
4-15 Kutta Condition and the Flat-Plate Airfoil	102
	106

4-16 Symmetrical Joukowski Airfoil	109
4-17 Circular-Arc Airfoil	114
4-18 Joukowski Airfoil	118
4-19 Schwarz-Christoffel Transformation	120
4-20 Source in a Channel	122
4-21 Flow through an Aperture	125
4-22 Flow past a Vertical Flat Plate	132
Problems	140
5 Three-dimensional Potential Flows	143
5-1 Velocity Potential	144
5-2 Stokes' Stream Function	145
5-3 Solution of the Potential Equation	147
5-4 Uniform Flow	149
5-5 Source and Sink	151
5-6 Flow due to a Doublet	153
5-7 Flow near a Blunt Nose	155
5-8 Flow around a Sphere	157
5-9 Line-distributed Source	157
5-10 Sphere in the Flow Field of a Source	160
5-11 Rankine Solids	162
5-12 d'Alembert's Paradox	164
5-13 Forces Induced by Singularities	167
5-14 Kinetic Energy of a Moving Fluid	172
5-15 Apparent Mass	174
Problems	175
6 Surface Waves	178
6-1 The General Surface-Wave Problem	179
6-2 Small-Amplitude Plane Waves	181
6-3 Propagation of Surface Waves	183
6-4 Effect of Surface Tension	186
6-5 Shallow-Liquid Waves of Arbitrary Form	189
6-6 Complex Potential for Traveling Waves	193
6-7 Particle Paths for Traveling Waves	195
6-8 Standing Waves	198
6-9 Particle Paths for Standing Waves	199
6-10 Waves in Rectangular Vessels	201
6-11 Waves in Cylindrical Vessels	205

6-12 Propagation of Waves at an Interface	209
Problems	214
Further Reading	218
Part III Viscous Flows of Incompressible Fluids	
7 Exact solutions	223
7-1 Couette Flow	224
7-2 Poiseuille Flow	226
7-3 Flow between Rotating Cylinders	229
7-4 Stokes' First Problem	231
7-5 Stokes' Second Problem	235
7-6 Pulsating Flow between Parallel Surfaces	237
7-7 Stagnation-Point Flow	239
7-8 Flow in Convergent and Divergent Channels	244
7-9 Flow over a Porous Wall	247
Problems	250
8 Low-Reynolds-Number Solutions	252
8-1 The Stokes Approximation	253
8-2 Uniform Flow	255
8-3 Doublet	255
8-4 Rotlet	257
8-5 Stokeslet	262
8-6 Rotating Sphere in a Fluid	267
8-7 Uniform Flow past a Sphere	268
8-8 Uniform Flow past a Circular Cylinder	270
8-9 The Oseen Approximation	273
Problems	274
9 Boundary Layers	276
9-1 Boundary-Layer Thicknesses	278
9-2 The Boundary-Layer Equations	279
9-3 Blasius' Solution	283
9-4 Falkner-Skan Solutions	287
9-5 Flow over a Wedge	291
9-6 Stagnation-Point Flow	293
9-7 Flow in a Convergent Channel	294
9-8 Approximate Solution for a Flat Surface	295
9-9 General Momentum Integral	300
9-10 Kármán-Pohlhausen Approximation	302

9-11	Boundary-Layer Separation	310
9-12	Stability of Boundary Layers	313
	Problems	318
	Further Reading	320
Part IV Compressible Flow of Inviscid Fluids		
	Governing Equations and Boundary Conditions	322
10	Shock Waves	327
10-1	Propagation of Infinitesimal Disturbances	328
10-2	Propagation of Finite Disturbances	332
10-3	Rankine-Hugoniot Equations	337
10-4	Conditions for Normal Shock Waves	340
10-5	Normal-Shock-Wave Equations	344
10-6	Oblique Shock Waves	346
	Problems	354
11	One-dimensional Flows	356
11-1	Weak Waves	357
11-2	Weak Shock Tubes	360
11-3	Wall Reflection of Waves	363
11-4	Reflection and Refraction at an Interface	366
11-5	Piston Problem	369
11-6	Finite-Strength Shock Tubes	371
11-7	Nonadiabatic Flows	376
11-8	Isentropic-Flow Relations	380
11-9	Flow through Nozzles	381
	Problems	383
12	Multi-dimensional Flows	386
12-1	Irrotational Motion	387
12-2	Janzen-Rayleigh Expansion	389
12-3	Small-Perturbation Theory	391
12-4	Pressure Coefficient	393
12-5	Flow over a Wave-shaped Wall	394
12-6	Prandtl-Glauert Rule for Subsonic Flow	400
12-7	Ackeret's Theory for Supersonic Flows	402
12-8	Prandtl-Meyer Flow	407
	Problems	410
	Further Reading	412

Appendices	413
<i>A</i> Vector Analysis	413
<i>B</i> Tensors	417
<i>C</i> Governing Equations	421
<i>D</i> Complex Variables	424
<i>E</i> Thermodynamics	430

Index 435