

Contents

Series Preface	vii
Preface	ix
Chapter 1	
Introduction: The Structure and Composition of Biomembranes	1
1.1 The Importance and Diversity of Membranes	1
1.2 Historical Perspective	6
1.3 Membrane Morphology	9
1.31 X-Ray Diffraction	9
1.32 Electron Microscopy	10
1.4 Membrane Isolation	13
1.41 Cell Disruption	14
1.42 Membrane Separations	15
1.43 Criteria of Membrane Purification	19
1.5 Composition of Membranes	20
1.51 Membrane Lipids	23
1.52 Lipids Play Multiple Roles Within Membranes	32
1.53 Membrane Proteins	33
1.6 Chapter Summary	35
Box 1.1 An Example of Particles Visualized by Freeze-Cleavage	12
Box 1.2 Sedimentation Velocity and Sedimentation Equilibrium	18
Chapter 2	
The Structures and Properties of Membrane Lipids	36
2.1 Lipid Crystals	36
2.2 Lipid–Water Mixtures	40
2.21 Lipid Hydration	41
2.22 Examples of Phase Diagrams of Single Component Lipid–Water Systems	43

2.23	Two Techniques Used for Examining Lipid Polymorphisms	45
2.24	Lipid Headgroup Orientation in the Bilayer	47
2.25	Acyl Chain Configuration and Packing in the Bilayer	48
2.26	Techniques Useful for Characterizing the Interior of the Bilayer	50
2.3	The Thermodynamics of Lipid Polymorphism	55
2.31	The Hydrophobic Force	55
2.32	Micelle Formation	57
2.33	Micelle Shapes: Why Does a Bilayer Form?	60
2.34	Lipid Shapes	63
2.4	Lipid Phase Transitions	64
2.41	Differential Scanning Calorimetry	65
2.42	Lipid Mixtures	70
2.5	Model Membrane Systems	75
2.51	Monolayers at an Air–Water Interface	75
2.52	Monolayers on a Solid Support	78
2.53	Planar Bilayer Membranes	79
2.54	Planar Bilayer Membranes on a Solid Support	79
2.55	Liposomes	80
2.6	Chapter Summary	83
Box 2.1	Some Lipids Isolated from Biological Membranes Do Not Form a Stable Bilayer	43
Box 2.2	Information Is Obtained Both from the Midpoint and Width of the Transition	66

Chapter 3

Characterization and Structural Principles of Membrane Proteins

3.1	Overview of Membrane Protein Structure	85
3.2	Purification of Membrane Proteins	87
3.21	Detergents	87
3.3	Characterization of Purified Intrinsic Membrane Proteins	91
3.31	Subunit Molecular Weight (SDS-PAGE Analysis)	91
3.32	Molecular Weight of the Native Protein by Hydrodynamic Measurements	93
3.33	Radiation Inactivation	95
3.34	Spectroscopic Methods and Secondary Structure	96
3.35	Enzymological Characterization	98
3.36	Quaternary Structure and Chemical Crosslinking	98
3.4	Three-Dimensional Structures from Diffraction Studies and Image Reconstruction	101
3.41	Crystallization of Membrane Proteins	101
3.42	Image Reconstruction and Two-Dimensional Crystals	103
3.5	Three Examples of Structural Studies on Membrane Proteins	105
3.51	Structure of the Photosynthetic Reaction Centers of <i>R. viridis</i> and <i>R. Sphaeroides</i>	106
3.52	The Structure of Bacteriorhodopsin	110
3.53	The Structure of Porin	116
3.6	Principles of Membrane Protein Structure and Predictive Algorithms	118
3.61	Membrane Proteins Are Amphiphilic	118

3.62	Ionizable Amino Acid Residues in Transmembrane Segments	120
3.63	Charged Amino Acids in the Solvent-Exposed Segments	121
3.64	A Special Role for Proline?	122
3.65	Algorithms for Identifying Primary Amphiphilic Structures	122
3.66	Algorithms for Identifying Secondary Amphiphilic Structures	126
3.7	Peptide Models for Membrane Proteins	127
3.71	Naturally Occurring Peptides	128
3.72	Synthetic Peptide Models	131
3.8	Membrane Proteins Covalently Bound to Lipids	132
3.9	Membrane Proteins Covalently Bound to Carbohydrates	134
3.10	Chapter Summary	134
Box 3.1	Image Reconstruction	103

Chapter 4

Lateral and Transverse Asymmetry in Membranes

4.1	Overview	138
4.2	Membrane Protein Topography	139
4.21	Methodology	139
4.22	Examples of Topographic Analysis of Membrane Proteins	145
4.3	The Cytoskeleton	147
4.31	Microfilaments	148
4.32	Intermediate Filaments	148
4.33	Microtubules	148
4.34	The Erythrocyte Membrane and Cytoskeleton	148
4.4	Transverse Lipid Asymmetry	151
4.41	Methodology for Measuring Lipid Distribution Across the Bilayer	152
4.42	Examples of Lipid Asymmetry	154
4.43	Transbilayer Motion of Lipids	159
4.5	Lateral Heterogeneity in Membranes	160
4.51	Macroscopic Domains and Plasma Membrane Barriers	160
4.52	The Thylakoid Membranes	162
4.53	Enveloped Viruses	163
4.54	Lipid Microdomains	164
4.6	Chapter Summary	165

Chapter 5

Membrane Dynamics and Protein—Lipid Interactions

5.1	Overview	166
5.11	Some Simple Models for the Motion of Membrane Components	168
5.2	Membrane Fluidity and the Application of Membrane Probes	169
5.21	Physiological Relevance of Membrane Fluidity	173
5.22	The Range and Rate of Motion Measured with ^2H -HMR, ESR, and Fluorescence Probes	173
5.23	ESR Probes for Measuring Membrane Fluidity	175
5.24	Fluorescence Probes for Measuring Membrane Fluidity	176
5.3	Rotation of Membrane Proteins	178
5.31	Examples of Protein Rotation	181
5.4	Lateral Diffusion of Lipids and Proteins in Membranes	182

5.41	Theoretical Models of Lateral Diffusion	183
5.42	Examples of Lateral Diffusion of Membrane Components	185
5.5	Protein—Lipid Interactions	187
5.51	The Binding of Lipids to Intrinsic Membrane Proteins in the Bilayer	187
5.52	Perturbations of the Lipid Bilayer Due to the Presence of Integral Membrane Proteins	191
5.53	Backbone and Side Chain Dynamics of Membrane Proteins	195
5.54	The Binding of Peripheral Membrane Proteins to the Lipid Bilayer	196
5.6	Chapter Summary	197
Box 5.1	The Depolarization of the Emitted Light Is Used to Measure Molecular Rotation	177
Box 5.2	The Rotation of Band 3 and of Cytochrome P450 Can Be Used to Monitor Intermolecular Associations	181
Box 5.3	Some Proteins Exhibit Selectivity in Binding to Phospholipids with Different Headgroups	190
Box 5.4	Phospholipid Polymorphism Can Be Influenced by Proteins	193
Chapter 6		
Membrane Enzymology		199
6.1	Overview	199
6.2	Some Special Considerations Relevant to the Activity of Membrane Enzymes	201
6.3	Reconstitution of Membrane Enzymes	204
6.31	Some Characteristics of Reconstituted Protein-Phospholipid Vesicles (Proteoliposomes)	207
6.4	The Role of Lipids in the Activity of Membrane-Bound Enzymes	209
6.5	Some Examples of Lipid-Requiring Enzymes	211
6.51	β -Hydroxybutyrate Dehydrogenase	211
6.52	Pyruvate Oxidase	213
6.53	Ca^{2+} -ATPase	214
6.54	Na^+/K^+ -ATPase	216
6.55	Glucose Transporter	216
6.6	Membrane-Bound Electron Transfer Chains	218
6.61	The Mitochondrial Steroidogenic System	220
6.62	The Microsomal Electron Transfer Chains	221
6.63	The Mitochondrial Respiratory System	222
6.64	The Photosynthetic Electron Transport System of Thylakoids	224
6.7	The Interactions Between Membranes and Soluble Enzymes	225
6.71	Soluble Enzymes Which Are Recruited to the Membrane when Needed	226
6.72	Soluble Enzymes and Enzyme Assemblies Which May Be Membrane-Bound In Vivo	229
6.73	Blood Coagulation Factors—Extracellular Enzymes Activated by Membrane Binding	230
6.74	Phospholipases—Soluble Enzymes Which Act on Membrane-Bound Substrates	231
6.8	Chapter Summary	234
Box 6.1	The Reconstitution of Membrane Enzymes into Lipid Vesicles	205

Box 6.2 Surface Dilution Effects in Mixed Micelles	227
Box 6.3 Several Theories Have Been Proposed to Explain the Activation of Phospholipases	232

Chapter 7

Interactions of Small Molecules with Membranes: Partitioning, Permeability, and Electrical Effects

7.1 Overview	235
7.11 Analysis of the Adsorption of Ligands to the Bilayer	235
7.12 Classes of Ligands Which Interact with the Lipid Bilayer	238
7.2 Permeability of Lipid Bilayer Membranes to Nonelectrolytes	241
7.21 Water Permeability	247
7.3 Electrical Properties of Membranes	248
7.31 Work Required to Place an Ion Inside a Bilayer Membrane	250
7.32 Internal Dipole Potential	251
7.33 Membrane Surface Potential	252
7.4 The Transmembrane Potential	261
7.41 Measuring the Transmembrane Potential	263
7.42 The Concept of an Energized Membrane	264
7.5 The Permeability of Lipid Bilayer Membranes to Ions	265
7.51 Permeability to Protons	265
7.52 Ionophores	266
7.6 Chapter Summary	268
Box 7.1 The Intrinsic pK_a and Apparent pK_a of a Group on the Surface of a Membrane	256

Chapter 8

Pores, Channels, and Transporters

8.1 Overview	270
8.11 Channels Versus Transporters: A Range of Functions and Rates	272
8.12 Channels and Transporters Viewed as Enzymes: Application of Rate Theory	276
8.13 Steady State Assays	281
8.14 Single-Channel Recordings: Reconstitution in Planar Membranes and Patch Clamping	283
8.15 Small Molecules Which Serve as Models for Channels and Pores	286
8.2 Several Examples of Pores and Channels	291
8.21 Gap Junctions	292
8.22 Nuclear Pore Complex	292
8.23 Porins	293
8.24 The Nicotinic Acetylcholine Receptor Channel	294
8.25 The Voltage-Sensitive Sodium Channel	299
8.26 The Calcium Channel	301
8.27 Summary	302
8.3 Several Examples of Uniporters, Symporters, and Antiporters	302
8.31 The Erythrocyte Glucose Transporter	303
8.32 The Lactose Permease from <i>E. coli</i>	304

8.33	Band 3, the Erythrocyte Anion Transporter	307
8.34	A Family of Mitochondrial Solute Transporters	308
8.4	Several Examples of Active Transporters Driven by ATP or PEP	309
8.41	Plasma Membrane (E_1E_2 -Type) Cation Transporters: ATP-Linked Ion Pumps	311
8.42	The Mitochondrial, Chloroplast, and Bacterial F_1F_0 -Type ATPases	314
8.43	Three Other Classes of Transporters	316
8.5	Active Transport Systems Driven by Electron Transfer or Light	317
8.51	Cytochrome <i>c</i> Oxidase, a Redox-Linked H^+ -Pump	318
8.52	Bacteriorhodopsin, a Light-Driven H^+ -Pump	318
8.6	Membrane Pores Created by Exogenous Agents	319
8.61	Toxins and Cytolytic Proteins	319
8.62	Permeabilization by Detergents	320
8.63	Permeabilization by Osmotic Stress	320
8.64	Permeabilization by Electroporation	321
8.65	Permeabilization by Creating Packing Defects in the Membrane	321
8.7	Chapter Summary	321
Box 8.1	The Electrical Response Time of a Membrane	274
Box 8.2	Steady-State Transport Assays with Mutational Variants of the Lactose Permease of <i>E. coli</i>	282
Box 8.3	Determination of the Binding Constant of a Channel Inhibitor by Single-Channel Conductance Studies	285
Box 8.4	Genetics and Site-Directed Mutagenesis Are Powerful Techniques in Studying Lactose Permease	306

Chapter 9

The Cell Surface: Receptors, Membrane Recycling, and Signal Transduction

9.1	Overview	323
9.2	A View of the Animal Cell Surface	325
9.3	Receptors for Cell Adhesion	327
9.31	Bacterial Adhesion to a Glycolipid	328
9.32	"Homing" of Lymphocytes and Hemopoietic Stem Cells Also Requires Glycoconjugates	329
9.33	Cell Adhesion Molecules	329
9.34	Receptors Involved in Cellular Interactions in the Immune Response	332
9.35	Integrins — A Family of Receptors Which Bind to Extracellular Matrix Components and Adhesive Proteins	334
9.36	Other Modes of Binding to Matrix and Adhesive Proteins	336
9.4	Membrane Recycling and Receptor-Mediated Endocytosis	336
9.41	General Features of the Endocytic Pathway	337
9.42	Receptor-Ligand Sorting	339
9.43	Clathrin	343
9.44	Some Examples of Receptors Which Become Internalized	343
9.5	Membrane Fusion	346
9.51	Studies with Lipid Vesicles	346
9.52	Studies with Viral Spike Proteins	349
9.6	Bacterial Signal Response Systems Demonstrate Some Features Found in Higher Organisms	351

9.61	Chemotaxis Receptors of <i>E. coli</i>	352
9.62	Receptors Coupled to Transcriptional Activation	354
9.7	Signal Transduction in Animal Cells	354
9.71	The Primary Response and Receptor Families	355
9.72	G Proteins	356
9.73	Phosphatidylinositol Turnover and Second Messengers	361
9.74	Receptor Phosphorylation and Desensitization	364
9.75	Several Examples of Receptors Involved in Signal Transduction in Animal Cells	365
9.8	Oncogenes and Signal Transduction	368
9.9	Chapter Summary	369
Box 9.1	Several Examples of Integrins	335
Box 9.2	Fusogenic Agents Promote Membrane Fusion	347
Box 9.3	The Best Characterized Spike Protein Is the Hemagglutinin Protein of Influenza Virus	350
Chapter 10		
Membrane Biogenesis		370
10.1	Overview	370
10.2	General Features of the Exocytic Pathway	375
10.3	General Features of Membrane Protein Biosynthesis	379
10.31	Are Channels Needed for Protein Translocation?	384
10.32	Polypeptide Signals Which Direct Protein Sorting and Membrane Insertion	387
10.33	Signal Peptidases	402
10.34	Soluble and Membrane-Bound Proteins Required for Translocation	403
10.35	Assembly of Multisubunit Complexes and Membrane Protein Turnover	405
10.4	Membrane Lipid Biosynthesis and Distribution	407
10.41	Where Are Membrane Lipids Synthesized?	408
10.42	Transport of Lipids from Their Site of Synthesis	411
10.43	Phospholipid Turnover	415
10.5	Adaptation of Membrane Lipid Composition in Response to Environmental Changes	416
10.6	Chapter Summary	417
Box 10.1	An In Vitro Assay for Vesicle-Mediated Intracellular Transport	377
Box 10.2	The Transport of Proteins Across a Membrane Requires an Unfolded Conformation	382
Box 10.3	Two Interesting Examples of Membrane Protein Turnover	407
Appendix 1		
Single-Letter Codes for Amino Acids		418
References		419
Index		511