

Contents

Section I Microppropagation, Virus-Free Plants, Haploid Production and Field Trials

I.1 Biotechnology and 21st Century Potato Y.P.S. BAJAJ (With 5 Figures)

1. General Account	3
2. Traditional Methods of Potato Breeding	4
3. Biotechnology Produces Novel Potatoes	5
4. The Future Potato	18
References	19

I.2 In Vitro Propagation of Potato — Progress in Czechoslovakia F. J. NOVÁK and J. ZADINA (With 7 Figures)

1. Introduction	23
2. Meristem Tip Culture	23
3. In Vitro Clonal Propagation	26
References	29

I.3 Virus-Free Potatoes Through Meristem Culture F. C. MELLOR and R. STACE-SMITH (With 3 Figures)

1. Introduction	30
2. Virus Elimination	31
3. Indexing Source Plants	33
4. Heat Therapy	34
5. Culture Medium	35
6. Meristem Culture	36
7. Indexing Treated Plantlets	37
8. Elimination of PSTV	37
9. Indexing Field Plants	38
10. Summary	38
References	38

I.4 In Vitro Induction of Virus-Free Potatoes by Chemotherapy
A.C. CASSELLS (With 7 Figures)

1. Introduction	40
2. Meristem and Explant Culture of Potato in the Presence of Virazole	44
3. Discussion	47
References	49

I.5 In Vitro Improvement of Potatoes: The New Zealand Approach**G.C. LINDSAY (With 2 Figures)**

1. Introduction	51
2. Biotechnological Approaches	52
3. Future Prospects of Biotechnology in Potatoes in New Zealand	60
References	60

I.6 In Vitro Production and Release of Potato Varieties in China**TAO GUOQING, YIN WEIYI, GONG GUOPU, and CUI CHENG (TSUI, C.) (With 5 Figures)**

1. Introduction	62
2. Meristem-Tip Culture	63
3. Cold Storage of Shoot Tips and Plantlets	67
4. Large-Scale Propagation and Growing of the Virus-Free Plantlets	68
5. Varieties Released	73
6. Comparison of Growth and Production of Healthy and Infected Plants	73
7. Conclusions and Prospects	76
References	77

I.7 Field Performance of Micropropagated Potato Plants
B.H. McCOWN and G.A. WATTIMENA (With 2 Figures)

1. Introduction	80
2. Growth and Production of Micropropagated Potatoes as Compared to Tuber-Generated Potatoes	80
3. Timing and Handling of Micropropagules	85
4. Conclusions	87
References	88

I.8 Anther Culture and Haploid Production in Potato
S. K. SOPORY and Y. P. S. BAJAJ (With 6 Figures)

1. Introduction	89
2. Factors Influencing Anther Culture	90
3. Pollen Culture	96
4. Development of Pollen Grains to Plants	97
5. Utilization of Anther Culture Technique and Haploids	99
References	103

Section II Physiological, Biochemical and Nutritional Studies, and Molecular Genetics**II.1 Potato Tuber Storage: Biochemical and Physiological Changes****L. H. W. VAN DER PLAS (With 20 Figures)**

1. Introduction	109
2. Relations Between Storage and Plant Hormones	110
3. Changes in Various Constituents During Storage	114
4. Changes in Metabolic Activities with Storage	120
References	132

II.2 Biotechnology of Nutritional Improvement of Potato**S. BAJAJ (With 2 Figures)**

1. Potato as a Food	136
2. Potato as a Source of Energy	140
3. Composition of Potato	145
4. Nutritional Considerations on Improvement	146
5. Conventional Methods of Improvement of Proteins and Amino Acids	146
6. Biotechnological Approaches to Nutritional Improvement ..	147
7. Conclusions and Prospects	149
References	150

II.3 Molecular Genetics of Potato**S. G. BALL (With 3 Figures)**

1. Introduction	155
2. Nuclear Genetics	155
3. Organelle Genetics	159
4. DNA-Mediated Genetic Transformation in <i>S. tuberosum</i> ..	163
5. Molecular Genetics of Somaclonal Variation	165
6. Conclusions and Prospects	167
References	169

Section III Protoplast Isolation, Culture and Somatic Hybridization**III.1 Viability, DNA Synthesis and Cell Wall Regeneration on Potato Protoplasts**Y. KIKUTA, K. FUJINO, W. SAITO, and Y. OKAZAWA
(With 3 Figures)

1. Introduction	177
2. Methodology	177
3. Results and Discussion	179
4. Conclusion	185
References	186

III.2 Improved Culture Techniques for Potato Protoplasts

I. CARLBERG, S. KARLSSON, and T. ERIKSSON (With 1 Figure)

1. Introduction	187
2. Source of Plant Material	187
3. Protoplast Isolation and Purification	189
4. Protoplast Culture	189
5. Conclusion	193
References	193

III.3 Regeneration of Plants from Potato Protoplasts

P. GRUN, MANN-WEN WANG, and S. RADKE (With 1 Figure)

1. Introduction	195
2. Pre-Growth of the Cells or Plant	196
3. Production of Protoplasts	197
4. Collection and Washing of Protoplasts	204
5. Culture of Protoplasts and Calli	204
6. Nature of the Protoclones Produced	207
References	208

III.4 Electrofusion and Analysis of Potato Somatic Hybrids

S.E. DE VRIES and M.J. TEMPELAAR (With 8 Figures)

1. Introduction	211
2. Protoplast Preparations	212
3. Electrofusion of Potato Protoplasts	213
4. Characterization of Variants and Fusion Products	218
References	222

III.5 Markers for Identifying Somatic Hybrids in Potato

W.D. BENTON and E. SHAHIN (With 2 Figures)

1. Introduction	223
2. Biochemical Markers	224

3. Transient Differences Between Hybrids and Their Parents	228
4. Gross Phenotypic Differences	229
5. Selectable Genetic Markers	232
6. Conclusion	235
References	237

Section IV Somaclonal Variation, Selection of Mutants and Resistant Plants

IV.1 Effect of the Origin of Explant on Callus Initiation and Differentiation in Potato

A. QURAISHI, I. JOHN, L. ROSSIGNOL-BANCILHON, and R. NOZERAN (With 3 Figures)

1. Introduction	243
2. Materials and Methods	244
3. Study of the Aptitudes for Callogenesis and Organogenesis of Various Primary Explants	244
4. Composition of the Callus After Fragmentation and Successive Subculturing	250
5. Histogenesis	251
6. Conclusions	251
References	254

IV.2 In Vitro Induction of Cold Acclimation in Potato

T.H.H. CHEN and P.H. LI (With 1 Figure)

1. Introduction	256
2. Potato Cold Acclimation	258
3. The Establishment of Tissue Cultures	259
4. In Vitro Cold Acclimation	260
5. Hormonal Effects on Cold Acclimation	260
6. Plasma Membrane Alterations	264
7. Conclusion	265
References	266

IV.3 Potato Improvement Through In Vitro Selection for Increased Levels of Free Amino Acids

J.M. WIDHOLM (With 2 Figures)

1. Introduction	268
2. Selection Methods	269
3. Potato Tissue Culture Selection	270
4. Other Tissue Culture Selections	272
5. Conclusion	277
References	278

IV.4 Biotechnologies of Obtaining Herbicide Tolerance in Potato**S. C. WELLER, J. B. MASIUNAS, and J. GRESSEL**
(With 7 Figures)

1. The Problem and Possible Solutions	281
2. Biotechnological Selection Systems	284
3. Results with Potatoes	289
4. The Future Outlook and Challenges	294
References	295

IV.5 In Vitro Production of Potatoes Bearing Resistance to Fungal Diseases**U. MATERN and G. A. STROBEL** (With 14 Figures)

1. Historic Selection of Potato	298
2. Potato Breeding and Disease Resistance	298
3. Somatic Approach	299
4. Isolation of Phytotoxin	308
5. Resistance Screening of Regenerates	309
6. Regeneration After in Vitro Selection	311
7. Conclusions	314
References	315

IV.6 Selection of Variants by Dual Culture of Potato and *Phytophthora infestans***M. MEULEMANS, D. DUCHENE, and G. FOUARGE**
(With 8 Figures)

1. Introduction	318
2. Regeneration of Potato Variants	318
3. Dual Culture of Potato and Fungus	319
4. Greenhouse Observations of Variants	327
5. Conclusions and Prospects	327
References	329

IV.7 Testing Somaclonal Variants of Potato for Resistance to Virus Disease**H. H. MURAKISHI and R. R. HARRIS**

1. Introduction	332
2. Examples of Specific Disease Resistance Studies with Potato	332
3. Previous Work on Resistance to Potato Viruses	333
4. Nature of Resistance to Disease in Somaclones	333
5. Protoplasts Isolation from Potato Leaf Mesophyll	334
6. Other Virus/Viroid Diseases	338
7. Methods for Future Work	338
References	343

IV.8 Breeding for Virus and Nematode Resistance in Potato Through Microspore Culture**H. UHRIG and G. WENZEL (With 1 Figure)**

1. Introduction	346
2. Methodology	347
3. Results	349
4. Discussion	354
References	356

IV.9 Genetic Diversity in Protoplast- and Cell-Derived Plants of Potato**E. JACOBSEN (With 2 Figures)**

1. Introduction	358
2. Karyological Observations	358
3. Phenotypic Changes in Protoplast- and Cell-Derived Plants	365
4. Conclusions and Prospects	371
References	372

IV.10 Variation in Tubers in Single Cell-Derived Clones of Potato in Ireland**A. C. CASSELLS, S. AUSTIN, and E. M. GOETZ (With 9 Figures)**

1. Introduction	375
2. Single Cell Culture	376
3. Somaclonal Variation in Regenerates from Single Cell Culture	381
4. Discussion	388
References	390

IV.11 Genetic Variability in Tuber Disc-Derived Potato Plants**R. C. RIETVELD, P. M. HASEGAWA, and R. A. BRESSAN****(With 2 Figures)**

1. Introduction	392
2. Tuber Disc Regeneration Procedure	393
3. Origins of Variability	393
4. Variability from Adventitious Regeneration	395
5. Statistical Approach to Evaluation of Quantitative Variation	398
6. Exemplary Analysis of Tuber Elongation Ratio Results	402
7. Conclusions	404
References	404

IV.12 In Vitro Induction of Mutation in Potato**G. ANCORA and A. SONNINO (With 5 Figures)**

1. Introduction	408
2. In Vivo Mutation Breeding	408

3. In Vitro Culture and Mutation Breeding	410
4. The Somaclonal Variation	418
5. Discussion and Perspectives	420
References	421

Section V Conservation and Exchange of Germplasm

V.1 Preservation of Potato Pollen

L.E. TOWILL (With 3 Figures)

1. Introduction	427
2. Materials and Methods	430
3. Results and Discussion	431
4. Conclusions	438
References	439

V.2 In Vitro Conservation of Potato Germplasm in Hungary

L.E. HESZKY and M. NAGY (With 3 Figures)

1. Introduction	441
2. Culture Initiation	444
3. Elimination of Viruses, Bacteria and Fungi	445
4. Maintenance of Cultures	446
5. Maintenance of Viruses in Culture	447
6. Long-Term Storage	447
7. Genetic Stability	448
8. Exchange and Transfer	448
9. Vegetative Propagation	449
10. In Vitro Tuberization	449
11. Planting	450
12. Development of Plants in the Field	450
13. Conclusions	450
References	451

V.3 Tissue Culture for the International Exchange of Potato and Cassava Germplasm

L. SCHILDE-RENTSCHLER and W.M. ROCA (With 4 Figures)

1. Introduction	453
2. Establishment of Gene Banks	454
3. Tissue Culture Methods	455
4. Distribution of Germplasm	458
5. Conclusions	462
References	463

V.4 Freeze Preservation of Suspension Cultures of Potato
J. HELLERGREN and P.H. LI (With 4 Figures)

1. Introduction	466
2. Preparation of Cell Suspension Culture	466
3. Freeze Preservation	467
References	470

V.5 Cryopreservation of Potato Germplasm
Y.P.S. BAJAJ (With 8 Figures)

1. Introduction	472
2. Cryopreservation of Excised Meristems	473
3. Cryopreservation of Root Tips	480
4. Cryopreservation of Cell Suspensions and Somaclones	481
5. Cryopreservation of Pollen	482
6. Viability and Stability During Storage	483
7. Clonal Repositories and the International Exchange of Germplasm	483
8. Conclusions and Prospects	484
References	485

**V.6 Fluid Drilling of Embryos in Potato Improvement –
A Future Possibility****S.K. O'HAIR, C.M. BAKER, and H.H. BRYAN (With 2 Figures)**

1. Problems of Potato 'Seed' Production	487
2. Alternative Planting Systems	487
3. Somatic Embryogenesis in Herbaceous Crops	488
4. Delivery Systems for Somatic Embryos	491
5. Recent Developments in Potato Tissue Culture	494
6. Future of Fluid Drilling of Potato Somatic Embryos	495
References	496

Subject Index	499
----------------------------	------------