

## Contents

LIST OF CONTRIBUTORS . . . . . v

PREFACE . . . . . vii

### **Interactions between Bacteria and Plants in the Root Environment**

J. M. LYNCH

|                                                                |    |
|----------------------------------------------------------------|----|
| 1. Introduction . . . . .                                      | 1  |
| 2. Anatomy of the Rhizosphere and Microbial Community          |    |
| Structure . . . . .                                            | 2  |
| 3. Provision of Substrates for Microbial Growth in the         |    |
| Rhizosphere . . . . .                                          | 7  |
| 4. Microbial Growth Kinetics and Mathematical Models of the    |    |
| Rhizosphere . . . . .                                          | 8  |
| 5. The Chemostat as a Rhizosphere Model. . . . .               | 10 |
| 6. The Role of Bacteria in Ion Uptake by Roots . . . . .       | 10 |
| 7. Competition between Bacteria and Roots for Oxygen . . . . . | 11 |
| 8. Provision by Bacteria of Growth Regulators and              |    |
| Phytotoxins to Roots . . . . .                                 | 12 |
| 9. The Nutrient Film Technique . . . . .                       | 13 |
| 10. Are Non-symbiotic Bacteria-Root Interactions of            |    |
| Agronomic Significance? . . . . .                              | 14 |
| 11. Conclusion . . . . .                                       | 19 |
| 12. Summary . . . . .                                          | 19 |
| 13. References . . . . .                                       | 20 |

### **Nitrogen Fixation by Free-living Bacteria Associated with Plants— Fact or Fiction?**

MARGARET E. BROWN

|                                                              |    |
|--------------------------------------------------------------|----|
| 1. Introduction . . . . .                                    | 25 |
| 2. Bacterial Fertilizers . . . . .                           | 26 |
| 3. Biological Nitrogen Fixation in Temperate Zones. . . . .  | 26 |
| 4. Biological Nitrogen Fixation in Tropical or Subtropical   |    |
| Areas . . . . .                                              | 29 |
| 5. The Acetylene Reduction Technique for Assessing           |    |
| Nitrogenase Activity . . . . .                               | 32 |
| 6. The Rhizosphere as a Site for Nitrogen Fixation . . . . . | 34 |

## CONTENTS

|                                                               |    |
|---------------------------------------------------------------|----|
| 7. Genetic Manipulation to Improve Nitrogen Fixation. . . . . | 36 |
| 8. General Conclusions. . . . .                               | 37 |
| 9. References . . . . .                                       | 38 |

**Symbiotic Nitrogen Fixation in Plants**

J. E. BERINGER, N. BREWIN AND A. W. B. JOHNSTON

|                                                                  |    |
|------------------------------------------------------------------|----|
| 1. Introduction . . . . .                                        | 43 |
| 2. Nitrogen Fixation. . . . .                                    | 44 |
| 3. The Range of Symbiotic Nitrogen-fixing Associations . . . . . | 45 |
| 4. References . . . . .                                          | 49 |

**Entry and Establishment of Pathogenic Bacteria in Plant Tissues**

EVE BILLING

|                                                                               |    |
|-------------------------------------------------------------------------------|----|
| 1. Introduction . . . . .                                                     | 51 |
| 2. Entry into Host Tissue . . . . .                                           | 52 |
| 3. Survival and Growth of Bacteria in the Intercellular Environment . . . . . | 53 |
| 4. The Interacting Surfaces in Intercellular Spaces . . . . .                 | 55 |
| 5. Host-Bacterium Interactions . . . . .                                      | 58 |
| 6. Roles of Bacterial Cell Components . . . . .                               | 60 |
| 7. Conclusions . . . . .                                                      | 66 |
| 8. References . . . . .                                                       | 66 |

**The Progression of Bacterial Disease Within Plants**

T. F. PREECE

|                                                              |    |
|--------------------------------------------------------------|----|
| 1. Introduction . . . . .                                    | 71 |
| 2. Symptoms of Bacterial Disease in Plants . . . . .         | 73 |
| 3. Microscopy of Diseased Plant Tissues . . . . .            | 76 |
| 4. Numbers of Bacteria Involved. . . . .                     | 77 |
| 5. The Extent of Bacterial Infection within Plants . . . . . | 79 |
| 6. Bacteria in Plant Senescence and Decay . . . . .          | 80 |
| 7. References . . . . .                                      | 81 |

**Interaction of Wall-free Prokaryotes with Plants**

M. J. DANIELS, D. B. ARCHER AND W. P. C. STEMMER

|                                                          |    |
|----------------------------------------------------------|----|
| 1. Introduction . . . . .                                | 85 |
| 2. The Diversity of Plant Mycoplasma Habitats . . . . .  | 86 |
| 3. Comparative Properties of Plant Mycoplasmas . . . . . | 88 |
| 4. Growth of Mycoplasmas in Plants . . . . .             | 89 |
| 5. Spread of Mycoplasmas in Plants. . . . .              | 91 |
| 6. Parameters Affecting Spread and Growth . . . . .      | 93 |

|                                                                    |    |
|--------------------------------------------------------------------|----|
| 7. Biochemistry of Symptom Production in Diseased Plants . . . . . | 94 |
| 8. References . . . . .                                            | 97 |

**The Biology of the Crown Gall—A Plant Tumour Induced  
by *Agrobacterium tumefaciens***

A. G. HEPBURN

|                                                           |     |
|-----------------------------------------------------------|-----|
| 1. The Molecular Basis of Tumorigenicity . . . . .        | 101 |
| 2. The Infection Process . . . . .                        | 106 |
| 3. Plant Regeneration and the Fate of the T-DNA . . . . . | 109 |
| 4. Genetic Engineering Prospects . . . . .                | 111 |
| 5. References . . . . .                                   | 111 |

**Bacterial Diseases of Food Plants—An Overview**

CONSTANCE M. E. GARRETT

|                                                  |     |
|--------------------------------------------------|-----|
| 1. Introduction . . . . .                        | 115 |
| 2. Isolation and Detection of Bacteria . . . . . | 117 |
| 3. Identification Methods . . . . .              | 118 |
| 4. Economic Importance . . . . .                 | 120 |
| 5. Control Measures. . . . .                     | 123 |
| 6. Conclusions . . . . .                         | 129 |
| 7. References . . . . .                          | 130 |

**The Effect of Bacteria on Post-harvest Quality of Vegetables  
and Fruits, with Particular Reference to Spoilage**

BARBARA M. LUND

|                                                                                 |     |
|---------------------------------------------------------------------------------|-----|
| 1. Introduction . . . . .                                                       | 133 |
| 2. Defects Caused by Bacteria. . . . .                                          | 134 |
| 3. The Mechanism of Maceration of Plant Tissue by Soft-rot<br>Bacteria. . . . . | 137 |
| 4. Factors Affecting Post-harvest Spoilage by Bacteria . . . . .                | 140 |
| 5. Control of Bacterial Spoilage . . . . .                                      | 145 |
| 6. Conclusions . . . . .                                                        | 147 |
| 7. References . . . . .                                                         | 148 |

**The Production of Foods and Beverages from Plant Materials by  
Micro-organisms**

J. G. CARR

|                                            |     |
|--------------------------------------------|-----|
| 1. Introduction . . . . .                  | 155 |
| 2. Beverages and Condiments. . . . .       | 156 |
| 3. Brined and Acidified Products . . . . . | 163 |
| 4. Conclusions . . . . .                   | 166 |
| 5. References . . . . .                    | 166 |

**Contamination of Food Plants and Plant Products with Bacteria of Public Health Significance**

DIANE ROBERTS, G. N. WATSON AND R. J. GILBERT

|                                                                            |     |
|----------------------------------------------------------------------------|-----|
| 1. Introduction . . . . .                                                  | 169 |
| 2. Implication of Foods of Plant Origin in Incidents of Botulism . . . . . | 171 |
| 3. Contamination of Foods of Plant Origin . . . . .                        | 172 |
| 4. Source of Organisms . . . . .                                           | 186 |
| 5. Survival on Plant Foods . . . . .                                       | 188 |
| 6. Discussion . . . . .                                                    | 190 |
| 7. References . . . . .                                                    | 191 |

**Bacteria in Frozen Vegetables**

M. J. M. MICHELS

|                                                                                 |     |
|---------------------------------------------------------------------------------|-----|
| 1. Introduction . . . . .                                                       | 197 |
| 2. Composition of the Bacterial Flora . . . . .                                 | 199 |
| 3. Organisms of Public Health Significance . . . . .                            | 201 |
| 4. Effects of Processing on Bacterial Counts of Blanched Vegetables . . . . .   | 202 |
| 5. Effects of Processing on Bacterial Counts of Unblanched Vegetables . . . . . | 206 |
| 6. Effects of Processing on Bacterial Counts of Prepared Vegetables . . . . .   | 210 |
| 7. Bacterial Counts of Blanched Vegetables . . . . .                            | 211 |
| 8. Bacterial Counts of Unblanched Vegetables . . . . .                          | 213 |
| 9. Significance of Bacterial Counts of Frozen Vegetables . . . . .              | 213 |
| 10. References . . . . .                                                        | 217 |

**Toxic Bacterial Dusts Associated with Plants**

MIRJA S. SALKINOJA-SALONEN, ILKKA HELANDER AND

RAGNAR RYLANDER

|                                                                                                                     |     |
|---------------------------------------------------------------------------------------------------------------------|-----|
| 1. Introduction . . . . .                                                                                           | 219 |
| 2. Bacteria in Vegetable Dusts . . . . .                                                                            | 220 |
| 3. Biological and Chemical Methods of Measuring the Amounts of Bacteria and Endotoxins in Vegetable Dusts . . . . . | 220 |
| 4. Inhalation Effects of Gram Negative Bacteria and Endotoxins . . . . .                                            | 223 |
| 5. Summary . . . . .                                                                                                | 231 |
| 6. References . . . . .                                                                                             | 231 |

**Light Microscope Techniques for the Microbiological Examination of  
Plant Materials****A. M. PATON**

|                                                                              |            |
|------------------------------------------------------------------------------|------------|
| 1. Introduction . . . . .                                                    | 235        |
| 2. The Examination of Plant Surfaces . . . . .                               | 236        |
| 3. References . . . . .                                                      | 243        |
| <b>Selected Abstracts of Papers Presented at the Summer Conference . . .</b> | <b>245</b> |
| <b>SUBJECT INDEX . . . . .</b>                                               | <b>255</b> |