

Contents

Preface	Page	ix
Acknowledgements		xi
List of tables		xvii

1	<i>Tissue-specific expression of proteins and messenger RNAs</i>	1
1.1	Introduction	1
1.2	Tissue-specific expression of proteins	1
1.2.1	General methods for studying the protein composition of tissues	2
1.2.2	Specific methods for studying the protein composition of tissues	4
1.3	Tissue-specific expression of messenger RNAs	6
1.3.1	General methods for studying the mRNAs expressed in different tissues	7
1.3.2	Specific methods for studying the mRNAs expressed in different tissues	9
1.4	Conclusions	12
	References	12
2	<i>The DNA of different cell types is similar in both amount and type</i>	13
2.1	Introduction	13
2.2	DNA loss	13
2.2.1	DNA loss as a mechanism of gene regulation	13
2.2.2	Chromosomal studies	14
2.2.3	Functional studies	19
2.2.4	Molecular studies	22
2.3	DNA amplification	24
2.3.1	DNA amplification as a mechanism of gene regulation	24
2.3.2	Chromosomal studies	25
2.3.3	Molecular studies	28
2.4	DNA rearrangement	30
2.5	Conclusions	43
	References	44

3	<i>Regulation at transcription</i>	46
3.1	Levels of gene regulation	46
3.2	Evidence for transcriptional regulation	48
3.2.1	Evidence from studies of nuclear RNA	48
3.2.2	Evidence from pulse-labelling studies	53
3.2.3	Evidence from nuclear run-on assays	56
3.2.4	Evidence from polytene chromosomes	59
3.3	Regulation at transcriptional elongation	61
3.4	Conclusions	65
	References	65
4	<i>Post-transcriptional regulation</i>	67
4.1	Regulation after transcription?	67
4.2	Regulation of RNA splicing	68
4.2.1	RNA splicing	68
4.2.2	Alternative RNA splicing	69
4.2.3	Mechanism of alternative RNA splicing	78
4.2.4	Generality of alternative RNA splicing	81
4.3	Regulation of RNA transport	82
4.4	Regulation of RNA stability	83
4.4.1	Cases of regulation by alterations in RNA stability	83
4.4.2	Mechanisms of stability regulation	85
4.4.3	Role of stability changes in regulation of gene expression	89
4.5	Regulation of translation	90
4.5.1	Cases of translational control	90
4.5.2	Mechanism of translational control	91
4.5.3	Significance of translational control	96
4.6	Conclusions	97
	References	97
5	<i>Transcriptional control – chromatin structure</i>	100
5.1	Introduction	100
5.2	Commitment to the differentiated state and its stability	103
5.3	Chromatin structure	106
5.4	Changes in chromatin structure in active or potentially active genes	112
5.4.1	Active DNA is organized in a nucleosomal structure	112
5.4.2	Sensitivity of active chromatin to DNaseI digestion	113
5.4.3	Mechanism of increased DNaseI sensitivity	116
5.5	Other changes in DNA and its associated proteins in active or potentially active genes	118
5.5.1	DNA methylation	118
5.5.2	Histone modifications	125

CONTENTS

5.6	DNaseI hypersensitive sites in active or potentially active genes	126
5.6.1	Detection of DNaseI hypersensitive sites	126
5.6.2	Nature and significance of hypersensitive sites	131
5.7	Conclusions	134
	References	135
 6 <i>Transcriptional control – DNA sequence elements</i>		138
6.1	Introduction	138
6.1.1	Relationship of gene regulation in prokaryotes and eukaryotes	138
6.1.2	Complexity of the eukaryotic system	138
6.1.3	The Britten and Davidson model for the co-ordinate regulation of unlinked genes	141
6.2	Short sequence elements located within or adjacent to the gene promoter	142
6.2.1	Short regulatory elements	142
6.2.2	The heat-shock response element	143
6.2.3	Other response elements	148
6.2.4	Mechanism of action of promoter regulatory elements	151
6.3	Enhancers	153
6.3.1	Regulatory sequences that act at a distance	153
6.3.2	Tissue-specific activity of enhancers	155
6.3.3	Mechanism of action of enhancers	158
6.3.4	Positive and negative action of enhancer elements	161
6.4	Role of repeated sequences	164
6.4.1	Repeated DNA	164
6.4.2	Role of repeated sequences in gene expression	165
6.5	Regulation of transcription by RNA polymerases I and III	170
6.5.1	RNA polymerase I	170
6.5.2	RNA polymerase III	170
6.6	Conclusions	176
	References	176
 7 <i>Transcriptional control – transcription factors</i>		180
7.1	Introduction	180
7.2	DNA binding by transcription factors	185
7.2.1	Introduction	185
7.2.2	The helix-turn-helix motif	185
7.2.3	The zinc finger motif	194

CONTENTS

7.2.4	The leucine zipper and the basic DNA-binding domain	204
7.2.5	Other DNA-binding domains	207
7.3	Activation of transcription	207
7.3.1	Introduction	207
7.3.2	Activation domains	208
7.3.3	How is transcription activated?	213
7.4	What activates the activators?	217
7.4.1	Introduction	217
7.4.2	Regulated synthesis of transcription factors	219
7.4.3	Regulated activity of transcription factors	221
7.5	Conclusions	225
	References	227
8	<i>Gene regulation and cancer</i>	231
8.1	Introduction	231
8.2	Proto-oncogenes	231
8.3	Elevated expression of oncogenes	237
8.4	Transcription factors as oncogenes	243
8.4.1.	Fos, Jun, and AP1	243
8.4.2	v-erbA and the thyroid hormone receptor	246
8.4.3	Other transcription-factor-related oncogenes	251
8.5	Conclusions	252
	References	254
9	<i>Conclusions and future prospects</i>	257
	References	259
<i>Index</i>		260

Introduction	1
Commitment to the differentiated state and its stability	13
Chromatin structure	16
Changes in chromatin structure in active or potentially active genes	12
5.4.1 Active DNA is hyperrepresented relative to inactive DNA	12
5.4.2 Sensitivity of active chromatin to DNaseI digestion	13
5.4.3 Mechanism of increased DNaseI sensitivity	16
Other changes in DNA and its associated proteins in active or potentially active genes	18
5.5.1 DNA methylation	18
5.5.2 Protein modifications	18
5.5.3 Phosphorylation	25