

CONTENTS

A THERMODYNAMICS AND KINETIC THEORY

CHAPTER 1 THE LAWS OF THERMODYNAMICS, 3

- 1.1 Preliminaries, 3
- 1.2 The First Law of Thermodynamics, 7
- 1.3 The Second Law of Thermodynamics, 10
- 1.4 Entropy, 15
- 1.5 Some Immediate Consequences of the Second Law, 20
- 1.6 Thermodynamic Potentials, 23
- 1.7 The Third Law of Thermodynamics, 26

CHAPTER 2 SOME APPLICATIONS OF THERMODYNAMICS, 33

- 2.1 Thermodynamic Description of Phase Transitions, 33
- 2.2 Surface Effects in Condensation, 38
- 2.3 Van der Waals Equation of State, 40
- 2.4 Osmotic Pressure, 46

CHAPTER 3 THE PROBLEM OF KINETIC THEORY, 55

- 3.1 Formulation of the Problem, 55
- 3.2 Binary Collisions, 59
- 3.3 Boltzmann Transport Equation, 65

CHAPTER 4 THE EQUILIBRIUM STATE OF A DILUTE GAS,	68
4.1 Boltzmann's <i>H</i> Theorem,	68
4.2 The Maxwell-Boltzmann Distribution,	70
4.3 The Method of the Most Probable Distribution,	75
4.4 Analysis of the <i>H</i> Theorem,	84
4.5 Two "Paradoxes,"	88
4.6 Validity of the Boltzmann Transport Equation,	89
CHAPTER 5 TRANSPORT PHENOMENA,	93
5.1 The Mean Free Path,	93
5.2 The Conservation Laws,	95
5.3 The Zero-Order Approximation,	99
5.4 The First-Order Approximation,	103
5.5 Viscosity,	107
5.6 Viscous Hydrodynamics,	111
5.7 The Navier-Stokes Equation,	112
5.8 Examples in Hydrodynamics,	116
CHAPTER 6 THE CHAPMAN-ENSKOG METHOD,	124
6.1 Purpose of the Method,	124
6.2 The Chapman-Enskog Expansion,	125
6.3 Existence of Solutions,	129
6.4 The First-Order Approximation,	132
B STATISTICAL MECHANICS	
CHAPTER 7 CLASSICAL STATISTICAL MECHANICS,	139
7.1 The Postulate of Classical Statistical Mechanics,	139
7.2 Microcanonical Ensemble,	143
7.3 Derivation of Thermodynamics,	147
7.4 Equipartition Theorem,	149
7.5 Classical Ideal Gas,	151
7.6 Gibbs Paradox,	153
CHAPTER 8 CANONICAL ENSEMBLE AND GRAND CANONICAL ENSEMBLE,	156
8.1 Canonical Ensemble,	156
8.2 Energy Fluctuations in the Canonical Ensemble,	159
8.3 Grand Canonical Ensemble,	162
8.4 Density Fluctuations in the Grand Canonical Ensemble,	165

8.5	Equivalence of the Canonical Ensemble and the Grand Canonical Ensemble, 168
8.6	Behavior of $W(N)$, 172
8.7	The Meaning of the Maxwell Construction, 174
CHAPTER 9	QUANTUM STATISTICAL MECHANICS, 183
9.1	The Postulates of Quantum Statistical Mechanics, 183
9.2	Density Matrix, 186
9.3	Ensembles in Quantum Statistical Mechanics, 188
9.4	Third Law of Thermodynamics, 191
9.5	The Ideal Gases: Microcanonical Ensemble, 192
9.6	The Ideal Gases: Grand Canonical Ensemble, 197
9.7	Foundations of Statistical Mechanics, 202
CHAPTER 10	THE PARTITION FUNCTION, 206
10.1	Darwin-Fowler Method, 206
10.2	Classical Limit of the Partition Function, 213
10.3	The Variational Principle, 220
CHAPTER 11	IDEAL FERMI GAS, 224
11.1	Equation of State of an Ideal Fermi Gas, 224
11.2	Theory of White Dwarf Stars, 230
11.3	Landau Diamagnetism, 237
11.4	De Haas-Van Alphen Effect, 243
11.5	Pauli Paramagnetism, 246
CHAPTER 12	IDEAL BOSE GAS, 253
12.1	Photons, 253
12.2	Phonons, 258
12.3	Bose-Einstein Condensation, 262
12.4	Alternative Treatment of Bose-Einstein Condensation, 270
CHAPTER 13	IMPERFECT GASES AT LOW TEMPERATURES, 274
13.1	Definition of the Problem, 274
13.2	Method of Pseudopotentials in Two-Body Problems, 275
13.3	Method of Pseudopotentials in N -Body Problems, 280
13.4	An Imperfect Fermi Gas, 282
13.5	An Imperfect Bose Gas, 289
CHAPTER 14	CLUSTER EXPANSIONS, 297
14.1	Classical Cluster Expansion, 297

- 14.2 Quantum Cluster Expansion, 303
- 14.3 The Second Virial Coefficient, 307

CHAPTER 15 PHASE TRANSITIONS, 313

- 15.1 Formulation of the Problem, 313
- 15.2 The Theory of Yang and Lee, 316
- 15.3 The Gas Phase, 320
- 15.4 Van Hove's Theorem, 321

C SPECIAL TOPICS IN STATISTICAL MECHANICS

CHAPTER 16 THE ISING MODEL, 329

- 16.1 Definition of the Ising Model, 329
- 16.2 Equivalence of the Ising Model to Other Models, 332
- 16.3 Bragg-Williams Approximation, 336
- 16.4 Bethe-Peierls Approximation, 341
- 16.5 One-Dimensional Ising Model, 346

CHAPTER 17 THE ONSAGER SOLUTION, 349

- 17.1 Formulation of Two-Dimensional Ising Model, 349
- 17.2 Mathematical Digression, 355
- 17.3 The Solution, 359

CHAPTER 18 LIQUID HELIUM, 374

- 18.1 The λ -Transition, 374
- 18.2 Tisza's Two-Fluid Model, 379
- 18.3 The Theories of Landau and Feynman, 381
- 18.4 Equilibrium Properties Near Absolute Zero, 392
- 18.5 Motion of the Superfluid, 393
- 18.6 Kinetic Theory Near Absolute Zero, 397
- 18.7 Superfluidity, 405

CHAPTER 19 HARD-SPHERE BOSE GAS, 409

- 19.1 Statement of the Problem, 409
- 19.2 Perturbation Theory, 410
- 19.3 A New Perturbation Method, 416
- 19.4 The Ground State and Low Excited States, 420
- 19.5 Higher Excited States, 428
- 19.6 Critical Discussion, 433
- 19.7 Macroscopic Properties, 435

D APPENDICES

APPENDIX A N-BODY SYSTEM OF IDENTICAL PARTICLES, 439

- A.1 The Two Kinds of Statistics, 439**
- A.2 *N*-Body Wave Functions, 441**
- A.3 Method of Quantized Fields, 448**

APPENDIX B THE PSEUDOPOTENTIAL, 455

APPENDIX C THE THEOREMS OF YANG AND LEE, 458

- C.1 Two Lemmas, 458**
- C.2 Theorem 1 of Yang and Lee, 461**
- C.3 Theorem 2 of Yang and Lee, 463**

INDEX, 465