

Contents

Contributors	xiii
Preface	xvii

I. ANIMALS

A. *Drosophila*

1 Organization, Sequences, and Induction of Heat Shock Genes

R. SOUTHGATE, M.-E. MIRault, A. AYME, AND A. TISSIÈRES

I. Introduction	3
II. Organization and Sequences	5
III. Induction	21
References	25

2 Mechanism of Transcriptional Control during Heat Shock

J. JOSE BONNER

I. Introduction	31
II. Phenomenology of Transcriptional Control	32

III. Identification of Regulatory Mechanism	36
IV. Transcriptional Induction <i>in Vitro</i>	39
V. Nature of Inducer	43
VI. Mechanism of Transcriptional Control	47
References	49

3 Mechanism of Translational Control in Heat-Shocked *Drosophila* Cells

DENNIS BALLINGER AND MARY LOU PARDUE

I. Introduction	53
II. Studies of Translational Control in Intact <i>Drosophila</i> Cells	56
III. Studies Using Cell-Free Translation Systems	58
IV. Studies Defining the Steps at Which Protein Synthesis Is Altered in Heat-Shocked Cells	63
V. Summary	67
References	68

4 Coordinate and Noncoordinate Gene Expression during Heat Shock: A Model for Regulation

SUSAN LINDQUIST AND BETH DIDOMENICO

I. Introduction	72
II. Basic Features of Heat Shock Response	72
III. Major Control Points of Heat Shock Gene Regulation	73
IV. Distinction between Coordinate and Noncoordinate Aspects of Regulation	75
V. Other Recent Findings Relevant to Regulation	83
VI. A Model for Regulation	85
References	87

5 Intracellular Localization and Possible Functions of Heat Shock Proteins

ROBERT M. TANGUAY

I. Introduction	91
II. Biochemical Studies on Heat Shock Protein Localization	93

III. Immunocytochemical Localization of Heat Shock Proteins	101
IV. Putative Function of Heat Shock Proteins	107
V. Summary	109
References	110

B. Other Animals

6 Heat Shock Proteins in Sea Urchin Development

GIOVANNI GIUDICE

I. Introduction	115
II. Heat Treatment of Embryos at Gastrula Stage	116
III. Heat Treatment of Embryos at Different Developmental Stages	117
IV. Fate of the Heat Shock Proteins after Reversal to Normal Protein Synthesis	119
V. Heat Shock Protein Synthesis in Dissociated Cells	120
VI. Tissue Specificity in the Production of Heat Shock Proteins	125
VII. Intracellular Location of Heat Shock Proteins	127
VIII. Bulk Protein Synthesis Inhibition after Heating	127
IX. Dependence of Heat Shock Protein Synthesis on Synthesis of Corresponding mRNA's	131
References	133

7 Heat Shock Gene Expression during Early Animal Development

JOHN J. HEIKKILA, JOHN G. O. MILLER, GILBERT A. SCHULTZ,
MALGORZATA KLOC, AND LEON W. BROWDER

I. Introduction	135
II. Sea Urchin	136
III. <i>Xenopus laevis</i>	138
IV. Mouse and Rabbit Preimplantation Embryos	145
V. Conclusions	154
References	156

8 Effects of Stress on the Gene Expression of Amphibian, Avian, and Mammalian Blood Cells

BURR G. ATKINSON AND ROB L. DEAN

I. Introduction	159
II. Elaboration of a Thermal Stress Response in Cultured Red Blood Cells from Normal (Nonanemic) and Phenylhydrazine-Treated (Anemic) Adult Quail	161
III. Characterization of the Heat Shock and Stress Proteins Induced in Cultured Red Blood Cells from Anemic Adult Quail	165
IV. Comparison of Quail Red Blood Cell Heat Shock Proteins Induced in Culture with Those Induced <i>in Situ</i>	171
V. Characterization of the Response of Red Blood Cells from Anemic Quail to Heat Shock and Chemical Stress	173
VI. Conclusion	177
References	179

9 Stress Response in Avian Cells

MILTON J. SCHLESINGER

I. Introduction	183
II. Stressors of Avian Cells	184
III. Induction and Deinduction	187
IV. Major Avian Stress Proteins	188
V. Conclusions	193
References	194

10 Stress Responses in Avian and Mammalian Cells

L. E. HIGHTOWER, P. T. GUIDON, JR., S. A. WHELAN, AND C. N. WHITE

I. Introduction	197
II. Purification of Three Major Rat Stress Proteins	198
III. Extracellular Appearance of Rat Stress Proteins	201
IV. Stimulation of Stress mRNA Synthesis in Chicken Embryo Cells Exposed to Canavanine or Heat	203
V. Inhibitors of the Stress Response	205
VI. Summary	207
References	209

11 Effect of Hyperthermia and LSD on Gene Expression in the Mammalian Brain and Other Organs

IAN R. BROWN

I. Introduction	211
II. Inhibitory Effect of LSD on Brain Protein Synthesis	212
III. Effect of Hyperthermia on Brain Protein Synthesis	214
IV. Induction of Heat Shock Protein in Intact Mammalian Organs	215
V. Developmental Changes in the Inducibility of Heat Shock Proteins	217
VI. Heat Shock Protein in Specific Cellular Systems in Brain	218
VII. Induction of mRNA Coding for Heat Shock Protein	221
VIII. Conclusions	222
References	223

12 Thermotolerance in Mammalian Cells: A Possible Role for Heat Shock Proteins

GLORIA C. LI AND ANDREI LASZLO

I. Introduction	227
II. Thermotolerance in Mammalian Systems	228
III. Correlation between Synthesis of Heat Shock Proteins and Development of Thermotolerance	231
IV. Kinetics of Heat Shock Protein Synthesis during Development of Thermotolerance: Effects of Temperature and Duration of Initial Heat Treatment	232
V. Relationship between Levels of Heat Shock Proteins and Cellular Survival during Decay of Thermotolerance	233
VI. Induction of Thermotolerance and Enhanced Synthesis of Heat Shock Proteins by Agents Other Than Heat	238
VII. Effect of Amino Acid Analogs on Thermal Sensitivity and Development of Thermotolerance	240
VIII. Stable Heat-Resistant Variants of Chinese Hamster Fibroblasts	245
IX. Heat-Induced Protection of Mice against Thermal Death	249
X. Induction of Thermal Tolerance and Enhanced Synthesis of Heat Shock Proteins in Murine Tumors	250

XI. Clinical Relevance	251
References	252

II. PLANTS AND FUNGI

13 Heat Shock Genes of *Dictyostelium*

ELLIOT ROSEN, ANNEGRETTE SIVERTSEN, RICHARD A. FIRTEL, STEVEN WHEELER, AND WILLIAM F. LOOMIS

I. Introduction	257
II. Physiological Role of Heat Shock Proteins	258
III. Induction of Heat Shock Genes	261
IV. Control of Transcription	262
V. The Heat Shock Protein 70 Gene of <i>Dictyostelium</i>	270
VI. A Heat Shock-Induced Message Is Encoded by a Transposable Element	271
VII. Heat Shock Proteins	272
References	276

14 Plant Productivity, Photosynthesis, and Environmental Stress

DONALD R. ORT AND JOHN S. BOYER

I. Introduction	279
II. Research Strategy	283
III. Conclusions	308
References	310

15 Responses to Environmental Heat Stress in the Plant Embryo

JOSEPH P. MASCARENHAS AND MITCHELL ALTSCHULER

I. Introduction	315
II. Storage Protein Synthesis Continues at Higher Rates at Heat Shock Temperatures in the Developing Soybean Embryo	316

III. Synthesis of Specific Messenger RNA's during Heat Shock in Developing Soybean Embryos	321
IV. Conclusions	324
References	325

16 Physiological and Molecular Analyses of the Heat Shock Response in Plants

JOE L. KEY, JANICE KIMPEL, ELIZABETH VIERLING, CHU-YUNG LIN, RONALD T. NAGAO, EVA CZARNECKA, AND FRIEDRICH SCHÖFFL

I. Introduction	327
II. Results	328
III. Discussion and Summary	343
References	346

17 Maize Genome Response to Thermal Shifts

CHRIS L. BASZCZYNSKI, DAVID B. WALDEN, AND BURR G. ATKINSON

I. Introduction	349
II. Characterization of the Heat Shock Response in Maize (cv. Oh43) Seedlings	350
III. Influence of Growing Temperature and Thermal Shifts on Gene Expression in Maize (cv. Oh43) Seedlings	358
IV. Impact of Genotype on Polypeptide Synthesis in Maize Seedlings	363
V. Summary	367
References	369
Index	373