

TABLE OF CONTENTS

	Page
I. Introduction	1
A. Statement of the problem	1
B. Taxonomic history	2
C. Ethnobotany	4
D. Materials	7
E. Methods	8
II. Hybridization studies	8
A. Methods	8
B. Materials	11
C. Results	12
III. Variation and taxonomy in <u>C. quinoa</u>	16
A. Description	16
B. Range of variation	17
1. Morphological variation	17
a. Qualitative characters	18
b. Quantitative characters	28
2. Physiological variation	31
3. Breeding systems	34
C. Geographic distribution of <u>C. quinoa</u>	38
D. Hybridization studies in <u>C. quinoa</u> complex . .	40
E. Taxonomic disposition of variation in <u>C. quinoa</u>	44
1. Cultivated forms of <u>C. quinoa</u>	46
2. Spontaneous forms of <u>C. quinoa</u>	51

	Page
IV. Variation and taxonomy in <u>C. nuttalliae</u>	56
A. Description	56
B. Range of variation	57
1. Qualitative characters	57
2. Quantitative characters	60
C. Geographical distribution of <u>C. nuttalliae</u>	63
V. Taxonomic relationships of <u>C. quinoa</u> and <u>C. nuttalliae</u>	65
VI. Effects of domestication in <u>C. quinoa</u>	68
VII. Effects of domestication in <u>C. nuttalliae</u>	70
VIII. Inheritance in <u>C. quinoa</u>	70
A. Inheritance of testa color in <u>C. quinoa</u>	70
B. Inheritance of male sterility in <u>C. quinoa</u>	72
IX. Origins of <u>C. quinoa</u> and <u>C. nuttalliae</u> as cultivated plants	75
A. Evolutionary origins	75
B. Centers of origin	79
C. Mode of origin of <u>Chenopodium</u> cultivars	80
X. Summary	81
XI. Appendix I. List of collections and summary of their quantitative characteristics	85
XII. Appendix II. Key to identifications of leaves in Figure 2 and Figure 12	93
XIII. References cited	94
XIV. Vita	99

I. Introduction

A. Statement of the problem

The genus Chenopodium is a cosmopolitan genus of primarily weedy annuals. A few species are of significant economic importance as weeds, food plants and as a source of an essential oil used as a vermifuge. C. quinoa and C. pallidicaule of the Andes and C. nuttalliae of Central Mexico are utilized as grains and are therefore sometimes called pseudocereals. C. nuttalliae also is used as a vegetable. Morphologically C. pallidicaule is a very distinct species. C. quinoa and C. nuttalliae, on the other hand are rather similar, and this study will primarily concern them.

The goals of this study have been to elucidate the systematics and origins of these two cultivated plants. Of particular interest in this regard, is the determination of the nature of the weedy, black seeded chenopodiums often called "ashpa quinoa" which are frequently found in association with white seeded cultivars. It was hoped that a study of these two cultivated chenopodiums may shed more light on the fascinating problem of cultural contact in pre-Columbian times of the people of Mexico and South America (see Heiser, 1965); in this connection the Mexican and South American cultivated chenopods have been analyzed in an attempt to determine whether cultivated chenopods were exchanged in pre-historic times. By studying the systematics of these plants one can determine the likelihood of separate or common