

Contents

Preface	page ix
1 A brief history of virology	1
1.1 <i>The discovery of viruses</i>	1
1.2 <i>The requirements for virus growth</i>	2
1.3 <i>Isolation of tobacco mosaic virus (TMV)</i>	3
1.4 <i>The application of electron microscopy</i>	3
1.5 <i>The discovery of infectious phage DNA</i>	5
1.6 <i>The development of mammalian tissue culture</i>	6
1.7 <i>Crystallisation of poliomyelitis virus</i>	8
1.8 <i>The modern era</i>	9
2 The principles of virus classification	11
2.1 <i>The structural components</i>	11
2.2 <i>The size and shape of viruses</i>	12
2.3 <i>Virus classification</i>	13
2.4 <i>The cryptogram</i>	16
2.5 <i>Variety and specificity</i>	19
2.6 <i>The antigenic nature of viruses</i>	19
3 Quantitative methods of assaying viruses	21
3.1 <i>Principles of virus titrations</i>	21
3.2 <i>Plaque assay</i>	21
3.3 <i>Quantal assay methods</i>	23
3.4 <i>The complement fixation test</i>	24
3.5 <i>The neutralisation test</i>	25
3.6 <i>Immunofluorescence</i>	25
3.7 <i>Radio-immunoassay</i>	26
3.8 <i>Enzyme-linked immunoassays</i>	27
3.9 <i>Immuno-diffusion</i>	27
3.10 <i>Haemagglutination and haemolysin tests</i>	29

	<i>Contents</i>
4 Purification of viruses	30
4.1 Preparation of virus harvests	30
4.2 Differential centrifugation	30
4.3 Precipitation procedures	31
4.4 Gel filtration	31
4.5 Sucrose-gradient sedimentation	32
4.6 Isopycnic centrifugation	34
4.7 Extraction by non-aqueous solvents	35
4.8 Treatment with detergents and enzymes	36
4.9 A purification protocol	37
4.10 Criteria for purity	38
5 Architecture of viruses	40
5.1 The genetic economy of multi-component systems	40
5.2 The influence of self-assembly on virus design	41
5.3 Reasons for helical and icosahedral symmetry	44
5.4 Helical symmetry (TMV)	45
5.5 Icosahedral symmetry	47
5.6 Structure of turnip yellow mosaic virus (TYMV)	52
5.7 Reconstitution of viruses	53
5.8 Structure-function relationships	55
5.9 Methods of degradation of viruses	55
5.10 Selective release of RNA from viruses	57
5.11 Viruses containing non-identical proteins	57
5.12 The protomer concept	59
5.13 The locality of specific polypeptides	61
5.14 The assembly of picornaviruses	62
5.15 Structure of adenoviruses	64
5.16 The biological function of adenovirus components	68
5.17 The structure of complex viruses	68
5.18 Structure of paramyxoviruses	69
5.19 Structure of poxviruses	72
5.20 Structure of bacteriophages	73
6 The strategy of virus infection	76
6.1 Introduction	76
6.2 Attachment	76
6.3 Penetration	78
6.4 Uncoating of viruses	80
6.5 The different types of virus infection	81
6.5.1 Lytic infection	82

6.5.2 Transformation	83
6.5.3 Persistent infections	83
6.6 A biochemical coup d'état	85
6.7 Inhibition of cell processes	88
6.8 Acquisition of new metabolic activity	90
6.9 Translation of virus genomes	94
6.9.1 RNA bacteriophages	94
6.9.2 Picornaviruses (poliovirus)	96
6.9.3 Vesicular stomatitis virus	99
6.9.4 Segmented genomes	101
6.9.5 DNA viruses	102
6.10 Replication of DNA viruses	103
6.10.1 Circular permutations	104
6.10.2 The rolling circle	106
6.10.3 Lysogeny and transduction	108
6.11 Replication of RNA viruses	111
6.12 Oncogenic viruses	121
6.12.1 DNA oncogenic viruses	121
6.12.2 RNA oncogenic viruses	122
6.13 Maturation of virus particles	124
6.13.1 The assembly of T-bacteriophages	124
6.13.2 Maturation of enveloped viruses	126
6.14 Defective interfering particles	126
6.15 Conclusions	128
6.15.1 Simple riboviruses	128
6.15.2 Infectious DNA viruses	128
6.15.3 Non-infectious nucleic acid	128
6.15.4 RNA-DNA viruses	129
6.15.5 Cell-to-cell migration	129
6.15.6 Interaction with sub-genomic (DI) particles	129
7 Viruses and the biosphere	130
7.1 Evolution	130
7.2 Vaccines	130
7.3 Chemotherapeutic agents	132
7.4 Alpha and Omega	136
Appendix	137
Further reading	139
Index	141