

Contents

1 DETERMINATION OF STRUCTURE-PROPERTY RELATIONSHIPS IN POLYMERS	1
1.1 Structure-Property Relationships of Polymer Chains, 1	
1.2 The Problem of Polymer Characterization, 2	
1.3 Approach, 4	
References, 8	
2 PROBABILITY APPLIED TO POLYMERIZATION	9
2.1 Elements of Probability Theory (1), 9	
2.2 Bernoulli or Random Chain Processes, 15	
2.2.1 Probability Applied to the Addition Polymerization Process, 15	
2.2.2 Distribution Function of the Polymer Molecules, 17	
2.2.3 Average Chain Length in the Polymerization Mixtures, 19	
2.2.4 Number of n-mers in the Polymer Mixture, 20	
2.2.5 Weight Fraction of x-mers in the Polymer Mixture, 21	
2.2.6 Molecular Weight Averages and Polydispersity, 21	
2.2.7 Calculation of Parameters from Probability Distributions, 23	
2.2.8 Real Distributions and Generalized Molecular Weight Distributions, 26	

2.3 Statistics of Markov Chains, 27

2.3.1 Definition, 27

2.3.2 Initial Probability Vectors, 28

2.3.3 Stationary Probability Vectors, 29

References, 31**3 THEORY OF THE CHARACTERIZATION OF POLYMER MICROSTRUCTURE 32****3.1 Introduction, 32****3.2 General Statistical Relations (1), 32****3.3 Microstructure of Instantaneous Binary Copolymerization Models, 39**

3.3.1 Terminal Copolymerization Model, 39

3.3.2 Penultimate Copolymerization Model, 45

3.3.3 Generalized Approach to Calculation of Microstructure for Effects of Remote Units, 51

3.3.4 Terminal Complex Copolymerization Model (8), 59

3.3.5 Copolymerization Model with Depropagation, 62

3.3.6 Other Polymerization Mechanisms, 66

3.4 Microstructure for Integral Copolymerization (13), 67

3.4.1 Composition for Integral Copolymerization, 67

3.4.2 Copolymer Microstructures for Integral Copolymerization, 71

References, 74**4 MULTICOMPONENT COPOLYMERIZATION THEORY 75****4.1 Composition of Terpolymers with Terminal Propagation, 75**

4.1.1 General Case, 75

4.1.2 One of Three Comonomers Cannot Homopolymerize, 79

4.1.3 Two of the Termonomers Cannot Homopolymerize, 79

4.1.4 Two Termonomers Cannot Add to Themselves or to Each Other, 80

4.1.5	Two Termonomers Can Only Add to Third Monomer, 80	
4.2	Sequence Distribution in Terpolymers (2), 80	
4.3	Multicomponent Copolymerization with n Monomers (4), 85	
	References, 87	
5	COPOLYMER MICROSTRUCTURE AND ITS EXPERIMENTAL TREATMENT	88
5.1	Introduction, 88	
5.2	Experimental Methods of Distinguishing Polymerization Models, 89	
5.2.1	Copolymer Composition Measurements, 90	
5.2.2	Copolymer Sequence Measurements, 98	
5.3	Copolymerization Reactivity Ratios from Composition, 105	
5.3.1	Preliminary Considerations, 105	
5.3.2	Linear Least Squares Methods, 107	
5.3.3	Nonlinear Least Squares Methods (9), 109	
5.3.4	Methods for Integrated Copolymerization Equation, 115	
5.3.5	Penultimate Reactivity Ratios from Composition, 116	
5.3.6	Charge Transfer Reactivity Ratios from Composition Copolymerization Model, 116	
5.4	Use of Preliminary Data to Design Copolymerization Experiments, 116	
	References, 119	
6	CHEMICAL AND PHYSICAL METHODS OF DETERMINING POLYMER MICROSTRUCTURE	120
6.1	Introduction, 120	
6.2	Preparation and Selection of Sample, 121	
6.3	Extraction, 121	
6.4	Dissolution Techniques for Polymers, 122	
6.5	Separation Procedures (4), 123	

6.6	Identification Procedures for Polymers (2, 7),	124
6.7	Chemical Analysis of Gross Composition,	125
6.7.1	Elemental Analysis,	125
6.7.2	Functional Group Analysis,	126
6.8	Chemical Methods of Determining Polymer Microstructures (14),	126
6.8.1	Selective Degradation for Microstructure Determination,	127
6.8.2	Cyclization Reactions,	136
6.8.3	Sequence Analysis by Cooperative Reactions,	137
6.9	Physical Methods of Determining Microstructure of Polymers,	138
6.9.1	Ultraviolet (UV) and Visible Spectroscopy,	139
6.9.2	Mass Spectroscopy (32),	142
6.9.3	Electron Spectroscopy for Chemical Applications (ESCA) (35),	145
References, 147		

7	VIBRATIONAL SPECTROSCOPY OF POLYMERS	149
7.1	Introduction,	149
7.2	Basic Theory,	150
7.2.1	Basic IR Spectroscopy (1),	150
7.2.2	Basic Raman Spectroscopy (3),	153
7.2.3	Basis of Raman and IR Spectroscopy,	157
7.2.4	Method of Structure Determination with Raman and IR Spectroscopy (6),	160
7.2.5	Selection of Vibrational Spectroscopic Method (7),	162
7.3	Sampling Techniques for Polymers,	165
7.3.1	IR Spectroscopy,	165
7.3.2	Raman Sampling (7),	168
7.4	Instrumentation for Vibrational Spectroscopy,	172
7.4.1	IR Dispersion Instruments,	172
7.4.2	FT IR Spectrometer (14),	174
7.4.3	Raman Spectroscopy,	177

7.5 Identification Techniques Using Vibrational Spectroscopy, 179	
7.6 Determination of the Chemical Functionality of Polymers Using Vibrational Spectroscopy, 181	
7.7 Effect of Chain and Sequence Length in Vibrational Spectroscopy (25, 26), 189	
7.8 Quantitative Spectroscopic Methods for Polymers, 200	
7.8.1 IR Spectroscopy (1), 200	
7.8.2 Raman Spectroscopy, 206	
7.9 Stereochemical Configuration of Polymer Chains (7), 206	
7.10 Conformation of the Polymer Chain, 209	
7.10.1 The Solid State, 209	
7.10.2 Conformation of Polymers in Liquid and Solution, 211	
7.11 Summary, 214	
References, 215	
8 NUCLEAR MAGNETIC RESONANCE OF POLYMER CHAINS	217
8.1 Introduction, 217	
8.2 Basic Theory of NMR (8), 218	
8.2.1 Nuclear Spin, 218	
8.2.2 Spin-Lattice Relaxation, 219	
8.2.3 Chemical Shift for ^1H and ^{13}C Nuclei, 220	
8.2.4 Dipole-Dipole Interaction, 225	
8.2.5 Electron Coupled Spin-Spin Interaction, 227	
8.3 Instrumentation for NMR, 232	
8.3.1 Field Sweep NMR (20), 232	
8.3.2 Experimental NMR of ^{13}C Nuclei, 234	
8.3.3 FT NMR (23), 234	
8.3.4 High Resolution ^{13}C NMR of Solids, 235	
8.4 Experimental Techniques (5), 240	
8.4.1 Sample Preparation, 240	

- 8.4.2 Spin Decoupling, 240
- 8.4.3 Isotopic Substitution, 243
- 8.4.4 Use of Model Compounds, 244
- 8.4.5 Effects of High Magnetic Field, 245
- 8.4.6 Computer Analysis of NMR Spectra, 247

8.5 Applications of NMR to Polymers (5), 250

- 8.5.1 Introduction, 250
- 8.5.2 Determination of Chemical Functionality, 251
- 8.5.3 Determination of Steric Configuration in Homopolymers, 254
- 8.5.4 Determination of Structural and Geometric Isomerism in Polymer Chains, 263
- 8.5.5 Determination of Conformation of Polymer Chains, 264
- 8.5.6 Determination of Copolymer Microstructure, 266

References, 270

9 CHAIN ISOMERISM THROUGH MONOMER ENCHAINMENT 273

9.1 Terminology, 273

9.2 General Considerations, 276

9.3 Preparation of Model Head-to-Head and Tail-to-Tail Polymers, 277

9.4 Theoretical Microstructure of Polymers with Positional Isomerism (7), 277

9.4.1 Homopolymers, 277

9.4.2 Theory of Monomer Inversion in Copolymers (8), 281

9.5 Methods of Determining the Nature of Chemical Linkage Between Monomers, 284

9.5.1 Chemical Methods, 284

9.5.2 Physical Methods, 288

References, 303

10 CHAIN ISOMERISM INVOLVING STEREOCONFIGURATION

10.1 Introduction, 304

10.2	Effect of Stereoregulation, 307
10.3	Designation of Sequence Types (1), 309
10.4	General Relations for Stereoregular Sequences (3), 311
10.4.1	Homopolymers, 311
10.4.2	Copolymer Microstructure with Stereoregular Polymerization (1), 315
10.5	Microstructure of Polymers Exhibiting Stereoregularity (1), 316
10.5.1	Terminal or Bernoulli Model, 316
10.5.2	Penultimate Model, 319
10.5.3	Penpenultimate Model, 321
10.5.4	Two State Propagation or Coleman-Fox Model (4, 5), 323
10.5.5	Stereoconfiguration for Copolymers, 325
10.6	Determination of Stereopolymerization Mechanisms, 327
10.6.1	Terminal or Bernoullian Stereopolymerization Model, 328
10.6.2	Penultimate Stereopolymerization Model, 328
10.6.3	Penpenultimate Stereopolymerization Model, 330
10.6.4	Two Stage Model, 333
10.7	Methods of Determining Stereoregularity, 334
10.7.1	NMR Measurement of Stereoregularity (1), 334
10.7.2	IR Methods, 341
10.8	Molecular Mechanism of Stereospecific Polymerization, 347
10.8.1	Free Radical Polymerization, 347
10.8.2	Anionic Polymerization, 348
10.8.3	Mechanism of Ziegler-Natta Catalyst, 349
10.8.4	Effect of Polymerization Conditions on Stereoregularity of Polymers, 352
References, 354	

11	CHAIN ISOMERISM DUE TO BRANCHING IN POLYMERS	356
-----------	---	------------

11.1	Introduction, 356
11.2	Short Chain Branching in Polymers, 357
11.2.1	Mechanism of Formation, 357
11.2.2	Characterization of Short Chain Branching in Polymers, 361

11.3 Long Chain Branching in Polymers, 373

- 11.3.1 Mechanisms of Long Branch Formation, 374
- 11.3.2 Branching Factors for Model Branched Polymers, 390
- 11.3.3 Characterization of Long Chain Branching (27, 28), 396
- 11.3.4 Characterization of Cross-Linked Structures, 402

References, 407

References, 407

INDEX

400