

Table of contents

Preface	v
Values of fundamental constants	ix
General references	ix

Chapter 1

Thermometers and calorimeters

1.1 Introduction and scope	1
1.2 System	1
1.3 State of a macroscopic system	2
1.4 Extensive and intensive properties	2
1.5 Thermodynamic properties	3
1.6 Phase	3
1.7 Open and closed phases	3
1.8 Open and closed systems	4
1.9 Work	4
1.10 Adiabatic enclosure. Thermally insulated system	6
1.11 Isolated system	7
1.12 Thermal equilibrium	7
1.13 The zeroth law. Temperature	8
1.14 Example	10
1.15 Measurement of temperature. Thermometry	11
1.16 Gas thermometry	12
1.17 Thermodynamic energy	15
1.18 The first law of thermodynamics	16
1.19 Measurement of energy difference. Calorimetry. Enthalpy	17
1.20 Chemical reaction in an approximately adiabatic calorimeter	19
1.21 Chemical reaction in a calorimeter having an isothermal jacket	20
1.22 Heat-capacity calorimetry	21
1.23 Adiabatic flow calorimeter	23
Problems for chapter 1	25

Chapter 2

Composition, and change of composition, of a phase

2.1 Scope	28
2.2 Amount of substance	28

2.3	The mole	29
2.4	Molar quantities	29
2.5	Mole fractions	30
2.6	Choice of independent variables	30
2.7	Partial molar quantities	30
2.8	Measurement of partial molar quantities	32
2.9	Molar quantities of mixing	34
2.10	Mixtures and solutions	35
2.11	Molality	36
2.12	Apparent molar quantities	37
2.13	Dilution	37
2.14	Dissolution	38
2.15	Equation for a chemical reaction	38
2.16	Extent of a chemical reaction	39
2.17	Example	39
	Problems for chapter 2	40

Chapter 3

Practical thermometry

3.1	Liquid-in-glass thermometers	42
3.2	Platinum resistance thermometers	42
3.3	Semi-conductor thermometers	43
3.4	Thermocouples	43
3.5	Quartz thermometers	45
3.6	Vapour-pressure thermometers	45
3.7	Other thermometers	46
3.8	The International Practical Temperature Scale	46

Chapter 4

Practical calorimetry

4.1	Methods of coping with heat leaks	48
4.2	Methods of coping with heat leaks in 'small k ' calorimetry	50
4.3	Dickinson's method of coping with heat leaks	52
4.4	Bunsen calorimetry	53
4.5	Measurements of heat capacities	54
4.6	Measurements of enthalpies of transition	56
4.7	Measurements of energies or enthalpies of chemical reaction	59
4.8	Measurements of energies or enthalpies of combustion	60
4.9	Measurements of enthalpies of reactions other than combustion	66
4.10	Measurements of enthalpies of dissolution and of dilution	68
4.11	Measurements of enthalpies of mixing	69

Chapter 5

Thermodynamics of a phase

5.1	Introduction and scope	72
5.2	The fundamental equation for a change of the state of a phase	72
5.3	Helmholtz function and Gibbs function	74
5.4	Integrated forms of the fundamental equations	76
5.5	Gibbs–Duhem equation for a phase	76
5.6	Absolute activity	77
5.7	Gibbs–Duhem equation for unit amount of substance of a phase	77
5.8	Compression factor of a phase	78
5.9	Affinity of a chemical reaction	78

Chapter 6

Change of state of a phase of fixed composition

6.1	Introduction and scope	80
6.2	The Gibbs–Helmholtz equation	81
6.3	The dependence on temperature of the entropy of a phase of fixed composition	81
6.4	Maxwell's equations	83
6.5	The dependence on pressure of the entropy of a phase of fixed composition	84
6.6	The dependence on temperature and on pressure of the entropy of a phase of fixed composition	85
6.7	The dependence on temperature and on pressure of the enthalpy of a phase of fixed composition	85
6.8	The dependence on pressure and on temperature of the Gibbs function of a phase of fixed composition	86
6.9	The dependence on pressure and on temperature of the chemical potential and of the absolute activity of a substance in a phase of fixed composition	87
6.10	Expansivity and compressibility	88
6.11	Relation between heat capacities at constant pressure and at constant volume	89
6.12	Isentropic compressibility	90
6.13	Isentropic expansion	91
6.14	Isoenergetic (Joule) expansion	92
6.15	Isenthalpic (Joule–Thomson) expansion	94
6.16	Isothermal Joule–Thomson expansion	94
6.17	Measurement of the ratio of two thermodynamic temperatures	95
6.18	The proportionality of thermodynamic temperature to perfect-gas temperature	96
	Problems for chapter 6	98

Chapter 7**Thermodynamic inequalities and their consequences**

7.1 Scope	101
7.2 The fundamental inequality	101
7.3 Derived inequalities	102
7.4 Thermal equilibrium	103
7.5 Hydrostatic equilibrium	104
7.6 Diffusive equilibrium	105
7.7 Chemical equilibrium	106
7.8 Thermal stability of a phase	107
7.9 Hydrostatic stability of a phase	108
7.10 Diffusional stability of a phase	109
7.11 The efficiency of a heat engine	109
7.12 Carnot's cycle	110
7.13 Philosophical digression	111

Chapter 8**Thermodynamics of a heterogeneous system**

8.1 Scope	116
8.2 Change of the state of a heterogeneous system	116
8.3 Thermal equilibrium in a heterogeneous system	116
8.4 Hydrostatic equilibrium in a heterogeneous system	117
8.5 Diffusive equilibrium in a heterogeneous system	117
8.6 Osmotic equilibrium	117
8.7 Chemical equilibrium in a heterogeneous system	118
8.8 Closed heterogeneous systems	118
8.9 The phase rule	119
Problems for chapter 8	121

Chapter 9**Phase equilibria for pure substances**

9.1 Introduction	122
9.2 Entropy change for a two-phase transition	125
9.3 Clapeyron's equation	127
9.4 Approximate form of Clapeyron's equation applicable when one of the phases is a dilute gas	127
9.5 Measurement of vapour pressure	128
9.6 Heat capacities of a pure substance at two-phase equilibrium	129
9.7 The dependence of the enthalpy of a phase transition on temperature	131
9.8 The critical point of a pure substance	131
Problems for chapter 9	136

Chapter 10**Dependence of thermodynamic functions on composition**

10.1 Scope	139
10.2 Dependence of enthalpy on composition	139
10.3 Chemical potentiometer	141
10.4 Perfect-gas-mixture chemical potentiometer	145
10.5 Determination of the dependence of chemical potential on composition without a chemical potentiometer	147
10.6 Another kind of chemical potentiometry	149
10.7 Galvanic cells as chemical potentiometers	153
10.8 Summary	153
10.9 Use of the Gibbs-Duhem equation	154
10.10 Dependence of Gibbs function on composition	155
10.11 Dependence of entropy on composition	156
10.12 Conclusions	156
Problems for chapter 10	156

Chapter 11**Standard thermodynamic functions**

11.1 Introduction	159
11.2 Derived standard thermodynamic functions	160
11.3 Standard equilibrium constant	160
11.4 Van't Hoff's equation	162
11.5 Determination of standard equilibrium constants by calorimetry	163
11.6 Primary thermodynamic tables	165
Problems for chapter 11	167

Chapter 12**Gases and gaseous mixtures**

12.1 Experimental methods for the study of pure gases	169
12.2 The virial equation of state of a gas	172
12.3 The second virial coefficient	174
12.4 Chemical potential of a pure gas	176
12.5 Van der Waals's and some related equations of state	176
12.6 Gaseous mixtures	178
12.7 Fugacity	183
12.8 Standard thermodynamic functions of a gaseous substance	184
12.9 Comparison of 'changes of molar Gibbs function for a chemical reaction'	185
12.10 Calculation of the standard molar enthalpy change from a measured enthalpy change. The Washburn correction	188

12.11 Calculation of the standard molar entropy of a gas from its molar entropy	190
12.12 Experimental methods for the study of a chemical equilibrium in a gaseous mixture	191
12.13 Thermodynamics of a chemical equilibrium in a gaseous mixture	192
12.14 Example	193
12.15 Chemical equilibrium for a reaction involving a gaseous mixture and one or more pure solid (or pure liquid) phases	194
12.16 Simultaneous equilibria	195
Problems for chapter 12	195

Chapter 13

The principle of corresponding states for fluids

13.1 The principle and its range of validity	199
13.2 Some consequences of the principle for single-phase systems	201
13.3 Some consequences of the principle for two-phase systems	203
13.4 Some approximate consequences of the principle of corresponding states	206
13.5 The second virial coefficient of a gaseous mixture	206
Problem for chapter 13	207

Chapter 14

Digression on Boltzmann's distribution law

14.1 Introduction to Boltzmann's distribution law	208
14.2 Equilibrium constant for an isomerization	210
14.3 Degeneracy	212
14.4 Separability of modes of motion	212
14.5 Translational mode	214
14.6 Rotational mode	216
14.7 Vibrational mode	217
14.8 Heat capacity of a gaseous substance at constant volume	218
14.9 Chemical equilibrium in a gaseous reaction	219
14.10 Entropy of a gaseous substance	222
14.11 The influence of nuclear spins: ortho and para molecules	223
14.12 Application to gaseous mixtures	227
14.13 Application to crystals	228
Problems for chapter 14	230

Chapter 15

Nernst's heat theorem

15.1 Statement of Nernst's heat theorem	232
---	-----

15.2	Methods of testing Nernst's heat theorem for reactions	234
15.3	Consequences of Nernst's heat theorem for pure substances	235
15.4	Spectroscopic entropies of gaseous substances	236
15.5	Hydrogen	237
15.6	The 'third law of thermodynamics'	237
	Problems for chapter 15	238

Chapter 16

Liquid mixtures

16.1	Introduction and scope	240
16.2	Mixing functions	240
16.3	Ideal mixtures	240
16.4	Excess functions	241
16.5	Activity coefficients	241
16.6	Gibbs-Duhem equation	242
16.7	Measurement of the excess functions	242
16.8	The recirculating still for measurements of excess molar Gibbs functions	244
16.9	Equilibrium methods for measurements of excess molar Gibbs functions	246
16.10	Raoult's law	250
16.11	Brief review of results for excess functions	252
16.12	Conformal mixtures	252
16.13	Lattice theory of mixtures	256
16.14	Simple ('regular') mixtures	259
16.15	Phase separation in liquid mixtures	259
16.16	Critical points in liquid mixtures	262
16.17	Standard thermodynamic functions for a liquid (or solid) substance	264
16.18	Chemical equilibrium in liquid (or solid) mixtures	265
16.19	Ideal associated mixtures	266
16.20	Equilibria of liquid mixtures and pure solid phases	268
16.21	Equilibria of liquid mixtures and mixed-crystal phases	270
16.22	Other equilibria between liquid mixtures and solid phases	271
	Problems for chapter 16	271

Chapter 17

Fluid mixtures

17.1	Introduction	274
17.2	Experimental methods	274
17.3	The simplest kind of phase diagram	275
17.4	Retrograde condensation	276
17.5	The barotropic effect	277

17.6	Azeotropy	277
17.7	The coexistence of three fluid phases	277
17.8	Application of the theory of conformal mixtures	283

Chapter 18

Solutions, especially dilute solutions

18.1	Introduction	285
18.2	Osmotic coefficient of the solvent	286
18.3	Activity coefficient of a solute	287
18.4	Relation between the osmotic coefficient of the solvent and the activity coefficients of the solutes	288
18.5	Ideal-dilute solutions	288
18.6	Determination of the molar mass of a solute	289
18.7	Determination of purity from measurements of freezing temperature	290
18.8	Standard thermodynamic functions for the solvent	290
18.9	Standard thermodynamic functions for a solute	291
18.10	Standard equilibrium constant for a reaction in solution	292
	Problems for chapter 18	293

Chapter 19

Digression on galvanic cells

19.1	Introduction	295
19.2	The galvanic cell	295
19.3	Examples of useful galvanic cells	297
19.4	Standard electromotive force	299
19.5	'Standard electrode potentials'	300

Chapter 20

Solutions of electrolytes

20.1	Electrical neutrality	302
20.2	Gibbs–Duhem equation for a solution containing electrolytes	302
20.3	Gibbs–Duhem equation for a solution of a single electrolyte	302
20.4	Debye–Hückel formulae for a solution of electrolytes	303
20.5	Solutions of more than one electrolyte	305
20.6	Measurement of the osmotic coefficient of the solvent	306
20.7	Measurement of the activity coefficient of a solute	307
20.8	Determination of the standard equilibrium constant of an electron-transfer reaction	309
20.9	Proton-transfer reactions. Acids and bases	311
20.10	Determination of the standard equilibrium constant of a proton-transfer reaction	312

20.11 The standard solubility product	314
20.12 Other ionic reactions	316
Problems for chapter 20	317

Chapter 21**Thermodynamics of fluid surfaces**

21.1 Work of stretching a surface	320
21.2 Curved surfaces	322
21.3 Practical measurement of interfacial tension	322
21.4 Thermodynamics of a plane surface phase	323
21.5 Gibbs's adsorption equation	324
Problems for chapter 21	325

Appendices

I Rules of partial differentiation	326
II Euler's theorem on homogeneous functions	327
III Three useful mathematical formulae	329
IV Solutions of the problems	330
Index	342