

Introduction	1
1.1 The Nature of Biochemistry	1
1.2 The Matrix of Life: Weak Interactions in an Aqueous Environment	10
1.3 The Energetics of Life	20
1.4 The Scope of Biochemistry	30
1.5 The Molecular Architecture of Living Matter	40
1.6 The Dynamics of Life: Catalysis and Control of Biochemical Reactions	50
1.7 Dynamics of Life: Energy, Biosynthesis, and Utilization of Precursors	60
1.8 The Integration of Biochemistry with Other Areas of Biology	70

Brief Contents

PART I The Realm of Biochemistry 1

- 1 The Scope of Biochemistry 3
- 2 The Matrix of Life: Weak Interactions in an Aqueous Environment 30
- 3 The Energetics of Life 59

PART II Molecular Architecture of Living Matter 89

- 4 Nucleic Acids 91
- 5 Introduction to Proteins: The Primary Level of Protein Structure 133
- 6 The Three-Dimensional Structure of Proteins 171
- 7 Protein Function and Evolution 216
- 8 Carbohydrates 260
- 9 Lipids, Membranes, and Cellular Transport 298

PART III Dynamics of Life: Catalysis and Control of Biochemical Reactions 337

- 10 Enzymes: Biological Catalysts 339
- 11 The Regulation of Enzyme Activity 381
- 12 Introduction to Metabolism 404

PART IV Dynamics of Life: Energy, Biosynthesis, and Utilization of Precursors 431

- 13 Carbohydrate Metabolism I: Anaerobic Processes in Generating Metabolic Energy 433

- 3 The Energetics of Life 59**
- Energy, Heat, and Work 59
 - Internal Energy and the State of a System 59
 - The First Law of Thermodynamics 60
 - Enthalpy and Free Energy 63
 - Reversible and Irreversible Processes 63
 - The Entropy of Processes: Entropy, Free Energy, and the Second Law 68
 - Free Energy and Entropy: The Equilibrium Constant 68
 - The Entropy of Energy 68
 - The Entropy and GIBBS Free Energy: The Equilibrium Constant 68
 - The Entropy of the System and Entropy of the Environment: The Equilibrium Constant 68
- 14 Oxidative Processes: Citric Acid Cycle and Pentose Phosphate Pathway 467**
- 15 Biological Oxidations, Electron Transport, and Oxidative Phosphorylation 504**
- 16 Carbohydrate Metabolism II: Biosynthesis 538**
- 17 Lipid Metabolism I: Fatty Acids and Triacylglycerols 571**
- 18 Lipid Metabolism II: Phospholipids, Steroids, Isoprenoids, and Eicosanoids 604**
- 19 Photosynthesis 643**
- 20 Metabolism of Nitrogenous Compounds: Principles of Biosynthesis, Utilization, Turnover, and Excretion 670**
- 21 Metabolism of Nitrogenous Compounds: Amino Acids 704**
- 22 Nucleotide Metabolism 742**
- 23 Integration and Control of Metabolic Processes 779**
-
- PART V Information 815**
- 24 Information Copying: Replication 817**
- 25 Information Restructuring: Restriction, Repair, Recombination, Rearrangement, Amplification 860**
- 26 Information Transfer: Transcription 910**
- 27 Information Decoding: Translation 954**
- 28 Encoding and Expression of Genetic Information in Eukaryotes 996**
- 29 Information Processing and Expression in Multicellular Organisms 1035**
- Answers to Problems 1075**
- Index 1097**