

CONTENTS

Frontispiece	ii
Preface	ix
Main symbols & abbreviations	xii
1 A quantitative approach to plant–environment interactions	1
<i>Modelling</i>	1
<i>Use of experiments</i>	5
2 Radiation	9
<i>Radiation laws</i>	10
<i>Radiation measurement</i>	17
<i>Radiation in natural environments</i>	20
<i>Radiation in plant communities</i>	27
<i>Radiation distribution within plant canopies</i>	30
<i>Sample problems</i>	35
3 Heat, mass and momentum transfer	36
<i>Measures of concentration</i>	36
<i>Molecular transport processes</i>	38
<i>Convective and turbulent transfer</i>	47
<i>Transfer processes above plant canopies</i>	55
<i>Transfer within plant canopies</i>	59
<i>Sample problems</i>	59
4 Plant water relations	60
<i>Physical and chemical properties of water</i>	60
<i>Cell water relations</i>	65
<i>Measurement of plant water status</i>	68
<i>Hydraulic flow</i>	71
<i>Liquid phase transport processes</i>	82
<i>Sample problems</i>	84

5 Energy balance and evaporation	85
<i>Energy balance</i>	85
<i>Measures of water vapour concentration</i>	88
<i>Evaporation</i>	90
<i>Dew</i>	101
<i>Sample problems</i>	103
6 Stomata	104
<i>Distribution of stomata</i>	104
<i>Stomatal mechanics</i>	106
<i>Methods of study</i>	109
<i>Stomatal response to environment</i>	115
<i>Sample problems</i>	129
7 Photosynthesis and respiration	130
<i>Photosynthesis</i>	130
<i>Respiration</i>	138
<i>Measurement and analysis of CO₂ exchange</i>	140
<i>Response to environment</i>	150
<i>Photosynthetic models, efficiency and productivity</i>	157
<i>Evolutionary and ecological aspects</i>	166
<i>Sample problems</i>	168
8 Environmental control of morphogenesis	170
<i>Light and plant development</i>	171
<i>Other environmental factors</i>	184
<i>Sample problem</i>	185
9 Temperature	186
<i>Physical basis of the control of tissue temperature</i>	186
<i>Physiological effects of temperature</i>	193
<i>Low temperature injury</i>	199
<i>Ecological aspects</i>	203
<i>Sample problems</i>	211
10 Drought and drought tolerance	212
<i>Plant water deficits and physiological processes</i>	212
<i>Drought tolerance</i>	216
<i>Further analysis of water use efficiency</i>	226
11 Wind, altitude and carbon dioxide	238
<i>Wind</i>	238
<i>Altitude</i>	247
<i>Carbon dioxide</i>	253
12 Physiology and yield improvement	255
<i>Variety improvement</i>	258
<i>Modelling and determination of crop ideotype</i>	262

<i>Development of screening tests</i>	267
<i>Examples of applications</i>	268
Appendices	275
1: <i>Units and conversion factors</i>	275
2: <i>Mutual diffusion coefficients of binary mixtures containing air or water at 20°C</i>	276
3: <i>Some temperature-dependent properties of air and water</i>	277
4: <i>Temperature dependence of air humidity and associated quantities</i>	278
5: <i>Thermal properties and densities of various materials and tissues (at 20°C)</i>	279
6: <i>Physical constants and other quantities</i>	280
7: <i>Solar geometry and irradiance</i>	281
8: <i>Measurement of leaf boundary layer conductance</i>	283
9: <i>Derivation of equation 9.9</i>	286
10: <i>Answers to selected problems</i>	288
References	290
Index	310