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INTRODUCTION

We shall assume the structure of the
gene to be that of a huge molecule,
capable only of discontinuous
change, which consists in a
rearrangement of the atoms and
leads to an isomeric molecule. The
rearrangement [mutation]| may
affect only a small region of the gene,
and a vast number of different
rearrangements may be possible.

Erwin Schrodinger, 1945




