

Contents

Series Preface	v
Preface to the Third Edition	vii
Preface to the Second Edition	ix
Preface to the First Edition	xi
Chapter 1	
The Protein Purification Laboratory	1
1.1 Apparatus, Special Materials, and Reagents	1
1.2 Separation of Precipitates and Particulate Material	3
Filtration	3
Centrifugation	4
1.3 Principles of Column Chromatography	8
1.4 Manipulation of Protein Solutions	14
Concentration	15
Removal of Salts; Changing Buffers	17
Chapter 2	
Making an Extract	22
2.1 The Raw Material	22
Freshness and Storage	25
2.2 Cell Disintegration and Extraction	26
Mammalian Tissues	30
Erythrocytes	31
Soft Plant Tissues	31
Yeast	31
Bacteria	32
Fatty Tissues	34
2.3 Optimization and Clarification of the Extract	34
2.4 Extraction of Membrane Proteins	38

Chapter 3	
Analysis—Measurement of Protein and Enzyme Activity	44
3.1 Methods for Measuring Protein Concentration	44
Biuret Reaction	45
Lowry Method	46
UV Absorption	46
Dye Binding	48
Bicinchoninic Acid	48
3.2 Measurement of Enzyme Activity—Basic Principles	50
Substrate Concentration, Activators, and Inhibitors	50
pH, Ionic Strength, and Temperature	55
3.3 Measurement of Enzyme Activity Using Stopped Methods	56
Incubation Conditions	57
Stopping Methods	58
Measurement of Product	59
3.4 Measurement of Enzyme Activity Using Continuous Methods	62
Coupled Methods	63
3.5 Practical Points in Enzyme Activity Determination	68
Chapter 4	
Separation by Precipitation	71
4.1 General Observations	71
4.2 The Solubility of Proteins at Low Salt Concentrations	72
Points to Note in Practice	75
4.3 Salting Out at High Salt Concentration	76
4.4 Precipitation with Organic Solvents	85
General Theory	85
Choice of Solvent	87
Operating Procedures	89
4.5 Precipitation with Organic Polymers and Other Materials	92
4.6 Affinity Precipitation	93
4.7 Precipitation by Selective Denaturation	95
General Principles	95
Temperature Denaturation	96
pH Denaturation	98
Denaturation by Organic Solvents	100
Chapter 5	
Separation by Adsorption I: General Principles	102
5.1 General Chromatographic Theory	103
Partition Coefficients	103
Zone Spreading, Resolution, and the Plate Height Concept	105
The Dissociation Constant for Protein-Adsorbent Interaction	111
Simplified Theory of Adsorption	112
5.2 Membrane Adsorbents; Radial Flow Columns	119
5.3 Batch Adsorption	121
General Principles	121
Practical Approaches	123
5.4 High-Performance Liquid Chromatography	126
General Principles	126

	Relationships Between Bead Size, Flow Rate, Pressure, and Optimum Performance	128
5.5	Types of Adsorbent Used in Protein Chromatography	132
	Nature of the Bead Matrix	132
	Summary of Adsorbent Types	135
5.6	Operating Conditions for Column Chromatography	139
	Sample Application	139
	Overload and Displacement Chromatography	139
	Flow Rates	142

Chapter 6

Separation by Adsorption II: Ion Exchangers and Nonspecific Adsorbents

6.1	Ion Exchangers—Principles, Properties, and Uses	146
	General Principles	146
	Adsorptive Capacities of Ion Exchangers	150
	Types of Ion Exchangers	152
	pH and Donnan Effects	153
	Elution of Adsorbed Protein	154
6.2	Ion-Exchange Chromatography—Practical Aspects	157
	Trials to Determine Ion-Exchange Behavior	159
	Buffers for Use in Ion-Exchange Chromatography	160
	Conditions of Adsorption	164
	Size and Dimensions of the Column	165
	Procedures for Elution	167
6.3	Inorganic Adsorbents	172
	Hydroxyapatite and Calcium Phosphate Gels	173
6.4	Hydrophobic Adsorbents	175
	Application of Sample to a Hydrophobic Column	176
	Elution of Protein from Hydrophobic Columns	177
	Reverse Phase Chromatography	178
	Other Hydrophobic Techniques	179
6.5	Immobilized Metal Affinity Chromatography (IMAC)	180
	General Principles	180
	Operating Conditions for IMAC	182
6.6	Miscellaneous Adsorbents	183
	Cationic Polymer-Nucleic Acid Complexes as Batch Adsorbents	183
	Thiophilic Adsorbents	184
	Mixed-Function Adsorbents	185

Chapter 7

Separation by Adsorption—Affinity Techniques

7.1	Principles of Affinity Chromatography	187
	Synthesis of Affinity Adsorbents	188
	Application of Chromatographic Theory to Affinity Adsorbents	196
	General Techniques and Procedures in Affinity Adsorption Chromatography	200
7.2	Immunoadsorbents	204
	Basic Principles	205
	Methods Using Polyclonal Antibodies	205

Methods Using Monoclonal Antibodies	208
Relative Advantages of Polyclonal and Monoclonal Antibodies	209
7.3 Dye Ligand Chromatography	210
Developmental History	210
Preparation of Dye Ligand Adsorbents	214
Dye-Protein Interactions	217
Screening to Obtain a Suitable Adsorbent	219
Elution of Proteins and Enzymes from Dye Columns	223
Cleaning and Storage of Dye Adsorbents	224
7.4 Affinity Elution from Ion Exchangers and Other Adsorbents	226
Affinity Elution from Ion Exchangers	227
Affinity Elution from Other Adsorbents	231
Practice and Theory of Affinity Elution	233
7.5 Commonly Used Affinity and Pseudo-Affinity Adsorbents	236
Small Ligands	236
Biopolymer Ligands	236
 Chapter 8	
Separation in Solution	238
8.1 Gel Filtration	238
Practical Procedures	243
8.2 Electrophoretic Methods	250
Electrophoresis Principles	251
Methods for Preparative Electrophoresis—Horizontal Slabs	253
Methods for Preparative Electrophoresis—Vertical Systems	255
Buffer Systems for Electrophoresis	256
Isoelectric Focusing	258
Isotachophoresis	262
8.3 Liquid Phase Partitioning	264
8.4 Ultrafiltration	267
 Chapter 9	
Purification of Special Types of Proteins	270
9.1 Recombinant Proteins	270
Terminology of Recombinant Proteins	271
9.2 Membrane Proteins	277
9.3 Purification of Antibodies	279
 Chapter 10	
Small-Scale and Large-Scale Procedures	283
10.1 Small-Scale Procedures—Proteins for Sequencing	283
10.2 Large-Scale Procedures	287
Scaling Up in the Laboratory	287
Commercial-Scale Protein Production	291
 Chapter 11	
Analysis for Purity	293
11.1 Electrophoretic Analysis	293
Simple (Native) Gel Electrophoresis	294

Urea Gels	296
SDS Gels	296
Gradient Gels	298
Isoelectric Focusing	299
Two-Dimensional Systems	300
Capillary Electrophoresis	300
Staining and Detection of Proteins after Electrophoresis	302
Detection of Specific Proteins	303
11.2 Other Analytical Methods	307
Chapter 12	
Optimization of Procedures; Final Steps	310
12.1 Speed Versus Resolution: The Time Factor	311
12.2 Stabilizing Factors for Enzymes and Other Proteins	317
Prevention of Denaturation	317
Avoidance of Catalytic Site Inactivation	318
Avoidance of Proteolytic Degradation	321
Other Stabilizing Influences on Proteins	323
12.3 Control of pH: Buffers	324
Buffer Theory	324
Effect of Temperature, Ionic Strength, and Organic Solvents on pK_a Values	326
Making Up Buffer Solutions	330
12.4 Following a Published Procedure	333
12.5 Final Steps—Storage, Crystallization, and Publication	335
Crystallization for Purification	336
Methods for Crystallization for X-ray Diffraction Studies	337
Conditions for Storage of Purified Proteins	342
What is Important for Publication?	344
Appendix A	
Precipitation Tables	346
Appendix B	
Solutions for Measuring Protein Concentration	349
Appendix C	
Buffers for Use in Protein Chemistry	351
Appendix D	
Chromatographic Materials	353
References	356
Index	375