

19	Organelle Biogenesis: The Mitochondrion, Chloroplast, Peroxisome, and Nucleus	809
► Part IV Integrative and Specialized Cellular Events		850
20	Cell-to-Cell Signaling	853
21	Nerve Cells	925
22	Microfilaments: Cell Motility and Control of Cell Shape	991
23	Microtubules and Intermediate Filaments	1051
24	Multicellularity: Cell-Cell and Cell-Matrix Interactions	1123
25	Regulation of the Eukaryotic Cell Cycle	1201
26	Cancer	1247
27	Immunity	1295

Chapter-Opening Illustrations

► Part I Laying the Groundwork

1	THE DYNAMIC CELL	3
	<i>Evolution: Biology as a Historical Science</i>	4
	<i>The Construction of Cells</i>	5
	Cells Are Surrounded by Water-Impermeable Membranes	6
	The Biological World Has Two Types of Cells	7
	Membranes Serve Functions Other Than Segregation	8
	Eukaryotic Cells Contain Organelles Thought to Have Evolved as Independent Organisms	9
	<i>The Molecules of Life</i>	9
	Genetics Allowed DNA Organization to Be Analyzed Before the Structure of DNA Was Discovered	10
	The Ultimate Triumph of Genetics Is the Human Genome Project	12
xiv	RNA Is the Molecule That Is the Product of the Genome	12
	<i>Cells Have Both a Fixed Identity and an Ability to Change</i>	12
	<i>Molecular Cell Biology</i>	14
	<i>Chemical Foundations of Cell Biology</i>	15
	<i>Energy</i>	16
	<i>Covalent Bonds</i>	16
	Each Atom Can Make a Defined Number of Covalent Bonds	17
	The Making or Breaking of Covalent Bonds Involves Large Energy Changes	18
	Covalent Bonds Exhibit Precise Orientations	18
	Polar Covalent Bonds Result from Unequal Sharing of Electrons	19
	<i>Asymmetric Carbon Atoms and the Structure of Amino Acids and Carbohydrates</i>	20
	The α Carbon in Amino Acids Is a Chiral Carbon	20
	Chiral Carbons Influence the Three-Dimensional Structure of Carbohydrates	20

Noncovalent Bonds and the Structures of Biological Molecules	21	Many Cellular Processes Involve the Transfer of Electrons in Oxidation-Reduction Reactions	37
The Hydrogen Bond Underlies Water's Biological Properties	22	An Unfavorable Chemical Reaction Can Proceed If It Is Coupled with an Energetically Favorable Reaction	39
Ionic Interactions Are Attractions Between Oppositely Charged Ions	23	Hydrolysis of the Phosphoanhydride Bonds in ATP Releases Substantial Free Energy	40
Van der Waals Interactions Are Caused by Transient Dipoles	24	ATP Is Used to Fuel Many Cellular Processes	42
Hydrophobic Bonds Cause Nonpolar Molecules to Adhere to Each Other	25	Polymers of Glucose with Specific Glycosidic Linkages Serve as Storage Reservoirs	43
Binding Specificity Can Be Conferred by Multiple Weak Bonds	26	<i>Activation Energy and Reaction Rate</i>	44
<i>Biomembranes: Hydrophobic Sheets Separating Aqueous Compartments</i>	27	Energy Is Required to Initiate a Reaction	44
Phospholipids Are the Principal Components of Biomembranes	27	Enzymes Catalyze Biochemical Reactions	45
Phospholipids Spontaneously Form Bilayers in Aqueous Solutions	27	<i>Summary</i>	47
<i>Chemical Equilibrium</i>	28	<i>Review Questions</i>	48
<i>pH and the Concentration of Hydrogen Ions</i>	30	<i>References</i>	49
Water Dissociates into Hydronium and Hydroxyl Ions	30	3 PROTEIN STRUCTURE AND FUNCTION	51
Acids Release Hydrogen Ions, and Bases Combine with Hydrogen Ions	31	<i>General Structure of Proteins</i>	52
Biological Molecules Can Have Both Acidic and Basic Groups	31	Form and Function Are Inseparable in Protein Architecture	52
The Henderson-Hasselbalch Equation Describes the Relationships between pH and Equilibrium Constants for Acids and Bases	32	Amino Acids, the Building Blocks of Proteins, Differ Only in Their Side Chains	52
Buffers Maintain the pH of Cells and of Extracellular Fluids	32	Polypeptides Are Amino Acids Connected by Peptide Bonds	56
<i>Biochemical Energetics: Free Energy in Biochemical Reactions</i>	34	Four Levels of Structure Determine the Shape of Proteins	56
The Change in Free Energy, ΔG , Determines the Direction of a Chemical Reaction	34	Polypeptides Can Be Chemically Analyzed and Synthesized	59
The ΔG of a Reaction Depends on Changes in Heat and Entropy	34	Three-Dimensional Protein Structure Is Determined through X-Ray Crystallography and NMR Spectroscopy	59
Temperature, Concentrations of Reactants, and Other Parameters Affect the ΔG of a Reaction	35	Graphical Representations of Proteins Highlight Internal Organization or Surface Structures	61
The Standard Free-Energy Change, ΔG° , Can Be Determined from Measurement of the Equilibrium Constant, K_{eq}	36	Secondary Structures Are Crucial Elements in Protein Architecture	63
The Generation of a Concentration Gradient Requires an Expenditure of Energy	37	Motifs Are Regular Combinations of Secondary Structures	66
		Structural and Functional Domains Are Modules of Tertiary Structure	67
		Sequence Homology Suggests Functional and Evolutionary Relationships among Proteins	68
		Many Proteins Contain Tightly Bound Prosthetic Groups	70

Chemical Modifications Alter the Biological Activity of Proteins	71	<i>Summary</i>	97
Proteolytic Processing and Protein Splicing Alter Protein Activity	72	<i>Review Questions</i>	99
A Protein Can Be Unfolded by Heat, Extreme pH, and Certain Chemicals	73	<i>References</i>	100
Many Denatured Proteins Can Refold into Their Native State In Vitro	73	4 NUCLEIC ACIDS, THE GENETIC CODE, AND PROTEIN SYNTHESIS	101
Folding of Proteins In Vivo Is Promoted by Chaperones	74	<i>Nucleic Acids: Linear Polymers of Nucleotides</i>	102
Enzymes	75	<i>DNA</i>	103
The Active Site of an Enzyme Is a Cage of Amino Acids That Binds Substrates and Catalyzes Reactions	75	The Native State of DNA Is a Double Helix of Two Antiparallel Chains with Complementary Nucleotide Sequences	103
Proteases Degrade Proteins by Reducing Activation Energy for Peptide-Bond Hydrolysis	76	The Two Strands Can Separate, Causing DNA to Denature	108
Coenzymes Are Essential for Certain Enzyme-Catalyzed Reactions	78	Many DNA Molecules Are Circular	109
Activity of Some Enzymes Depends on a Conformational Change Induced by Substrate Binding	80	Linking Number, Twist, and Writhe Describe DNA Superstructure	110
The Catalytic Activity of an Enzyme Can Be Characterized Mathematically	81	<i>RNA: The Basic Chemical Structure and Its Function in Gene Expression</i>	111
Enzymatic Activity Can Be Regulated by Various Mechanisms	83	<i>Rules for the Synthesis of Proteins and Nucleic Acids and Macromolecular Carpentry</i>	113
Antibodies	86	<i>Nucleic Acid Synthesis</i>	114
Antibodies Are Multidomain, Multisubunit Proteins	86	Nucleic Acid Polymerization Can Be Described by Four Rules	115
Antigen-Binding Site Complements the Surface of the Antigen	87	Organization of Genes in DNA Differs in Prokaryotes and Eukaryotes	116
Antibodies Are Valuable Tools for Identifying and Purifying Proteins	87	Eukaryotic Primary RNA Transcripts Are Processed to Form Functional mRNAs	119
Antibodies Can Catalyze Chemical Reactions	87	<i>Protein Synthesis: The Three Roles of RNA in Translation</i>	119
Techniques for Purifying and Characterizing Proteins	88	Messenger RNA Carries Information from DNA in a Three-Letter Genetic Code	120
Centrifugation Can Separate Particles and Molecules That Differ in Mass or Density	88	Experiments with Synthetic mRNAs and Trinucleotides Break the Genetic Code	122
Electrophoresis Separates Molecules According to Their Charge: Mass Ratio	92	Folded Structure of tRNA Is Integral to Its Function	124
Liquid Chromatography Resolves Proteins by Mass, Charge, and Binding Affinity	94	Aminoacyl-tRNA Synthetases Activate tRNA	126
Highly Specific Assays Detect Individual Proteins	96	Each tRNA Molecule Is Recognized by a Specific Aminoacyl-tRNA Synthetase	128
<i>The Steps in Protein Synthesis</i>	133	Ribosomes Are Protein-Synthesizing Machines	128
AUG Is the Initiation Signal in mRNA	133		

Initiation Factors, tRNA, mRNA, and the Small Ribosomal Subunit Form an Initiation Complex	133
Ribosomes Provide Three tRNA-Binding (A, P, and E) during Protein Elongation	136
Polypeptide Termination Requires Protein Factors That Specifically Recognize UAA, UAG, and UGA	138
<i>Summary</i>	138
<i>Review Questions</i>	139
<i>References</i>	139
5 CELL ORGANIZATION, SUBCELLULAR STRUCTURE, AND CELL DIVISION	141
<i>Prokaryotic and Eukaryotic Cells</i>	142
Prokaryotes Have a Relatively Simple Structure	142
Eukaryotic Cells Have Complex Systems of Internal Membranes and Fibers	143
Prokaryotes and Eukaryotes Contain Similar Macromolecules	143
Prokaryotes and Eukaryotes Differ in the Amount of DNA per Cell	144
The Organization of DNA Differs in Prokaryotic and Eukaryotic Cells	147
<i>Light Microscopy and Cell Architecture</i>	148
The Resolution of Standard Light (Bright-Field) Microscopy Is Limited to about 0.2 μ m	148
Immunofluorescence Microscopy Reveals Specific Proteins and Organelles within a Cell	150
Fluorescence Microscopy Can also Measure the Local Concentration of Ca^{2+} Ions and the Intracellular pH	153
The Confocal Scanning Microscope Produces Vastly Improved Fluorescent Images	154
Phase-Contrast and Nomarski Interference Microscopy Visualize Unstained Living Cells	156
<i>Electron Microscopy</i>	158
Transmission Electron Microscopy Depends on the Differential Scattering of a Beam of Electrons	158
Minute Details Can Be Visualized on Viruses and Subcellular Particles	159
Scanning Electron Microscopy Visualizes Details on the Surface of Cells or Particles	161

<i>Sorting Cells and Their Parts</i>	161
Flow Cytometry Is Used to Sort Cells Optically	161
Fractionation Methods Isolate Subcellular Structures	161
<i>The Biomembranes and Organelles of the Eukaryotic Cell</i>	166
The Plasma Membrane Has Many Varied and Essential Roles	167
The Eukaryotic Nucleus Is Bounded by a Double Membrane	167
The Nucleus Contains the Nucleolus, a Fibrous Matrix, and DNA-Protein Complexes	168
The Cytosol Contains Many Cytoskeletal Elements and Particles	168
The Endoplasmic Reticulum Is an Interconnected Network of Internal Membranes	170
Golgi Vesicles Process Secretory and Membrane Proteins and Sort Them to Their Proper Destinations	172
Lysosomes Are Acidic Organelles That Contain a Battery of Degradative Enzymes	173
Vacuoles in Plant Cells Store Small Molecules and Enable the Cell to Elongate Rapidly	174
Peroxisomes Produce and Degrade Hydrogen Peroxide	174
The Mitochondrion Is the Principal Site of ATP Production in Aerobic Cells	174
Chloroplasts Are the Sites of Photosynthesis	175
Cilia and Flagella Are Motile Extensions of the Eukaryotic Plasma Membrane	175
The Plasma Membrane Binds to the Cell Wall or the Extracellular Matrix	176
<i>Cell Division and the Cell Cycle</i>	177
In Prokaryotes DNA Replication Is Followed Immediately by Cell Division	177
In Eukaryotic Cells DNA Synthesis and Cell Division Occur in Special Phases of the Cell Cycle	177
Mitosis Is the Complex Process That Apportions the New Chromosomes Equally between Daughter Cells	178
Plant Cells Show Some Variations in Mitosis	180

<i>Yeast Cells Have a Simplified Division</i>	181
Meiosis Is the Form of Cell Division in Which Haploid Germ Cells Are Produced from Diploid Cells	181
<i>Summary</i>	185
<i>Review Questions</i>	186
<i>References</i>	187
6 MANIPULATING CELLS AND VIRUSES IN CULTURE	189
<i>Growth of Microorganisms in Culture</i>	190
Many Microorganisms Can Be Grown in Minimal Medium	190
Mutant Strains of Bacteria and Yeast Can Be Isolated by Replica Plating	190
<i>Growth of Animal Cells in Culture</i>	193
Rich Media Are Required for Culture of Animal Cells	193
Most Cultured Animal Cells Only Grow on Special Solid Surfaces	193
Primary Cell Cultures Have a Finite Life Span	194
Transformed Cells Can Grow Indefinitely in Culture	196
<i>The Use of Hybrid Cells in Genetic Analysis of Animal Cells and Production of Monoclonal Antibody</i>	198
Genes Can Be Mapped to Specific Chromosomes with Interspecific Hybrid Cells	199
Mutants in Purine- and Pyrimidine-Salvage Pathways Are Good Selective Markers	200
Hybridomas Are Fused Lymphoid Cells That Make Monoclonal Antibodies	201
<i>Viruses: Structure and Function</i>	202
Viral Capsids Are Regular Arrays of One or a Few Types of Proteins	202
Most Viral Host Ranges Are Narrow	204
Viruses Can Be Cloned and Counted in Plaque Assays	205
Viral Growth Cycles Are Classified as Lytic or Lysogenic	205
Four Types of Bacterial Viruses Are Widely Used in Biochemical and Genetic Research	206
Experiments with Plant Viruses Proved That RNA Can Act as a Genetic Material	208

Six Animal-Virus Classes Are Recognized Based on Genome Composition and Pathway of mRNA Synthesis	208
<i>Radioisotopes: Indispensable Tools for Following Biological Activity</i>	212
Several Factors Determine the Choice of a Radiolabel	213
Radiolabeled Molecules Can Be Detected by Visual and Quantitative Methods	214
Intracellular Precursor Pools Affect the Outcome of Pulse-Chase Experiments	215
Synthesis Time of Macromolecules Can Be Estimated from Labeling Experiments	216
The Dintzis Experiment Demonstrated That Proteins Are Synthesized from the Amino End to the Carboxyl End	216
<i>Summary</i>	218
<i>Review Questions</i>	219
<i>References</i>	220
7 RECOMBINANT DNA TECHNOLOGY	221
<i>DNA Cloning with Plasmid Vectors</i>	222
Plasmids Are Extrachromosomal Self-Replicating DNA Molecules	222
<i>E. coli</i> Plasmids Can Be Engineered for Use as Cloning Vectors	222
Plasmid Cloning Permits Isolation of DNA Fragments from Complex Mixtures	224
<i>Production of Recombinant Plasmids</i>	225
Restriction Enzymes Cut DNA Molecules at Specific Sequences	225
Many Restriction Enzymes Generate DNA Fragments with "Sticky" Ends	226
DNA Ligase Covalently Links Restriction Fragments	227
Restriction Fragments Are Readily Inserted into Plasmid Vectors	228
<i>Formation and Uses of Synthetic DNA</i>	228
<i>λ-Phage Cloning Vectors and Construction of a Genomic Library</i>	229
Bacteriophage λ Can Be Modified for Use as a Cloning Vector and Assembled In Vitro	230
Nearly Complete Genomic Libraries of Higher Organisms Can Be Prepared by λ Cloning	231
Larger DNA Fragments Can Be Cloned in Cosmids and Other Vectors	233

<i>Construction of a cDNA Library</i>	234
cDNAs Are Produced by Copying Isolated mRNAs with Reverse Transcriptase	235
cDNAs Can Be Enzymatically Converted to Double-Stranded DNA and Cloned	235
<i>Identification of Specific Clones in a Genomic or cDNA Library</i>	236
Membrane Hybridization Can Be Used to Screen a Library	237
Certain cDNAs and Synthetic Oligonucleotides Are Used as Probes	238
Expression Cloning Identifies Specific Clones Based on Properties of the Encoded Proteins	240
<i>Analyzing and Sequencing Cloned DNA</i>	240
Cleavage with an Appropriate Restriction Enzyme Separates a Cloned DNA from Its Vector	240
Gel Electrophoresis Resolves DNA Fragments of Different Size	242
Multiple Restriction Sites Can Be Mapped on a Cloned DNA Fragment	243
Pulsed-Field Gel Electrophoresis Separates Large DNA Molecules	244
Nucleotide Sequencing of Cloned DNA Fragments Paves the Way for Sequencing Entire Genomes	245
<i>Analysis of Specific Nucleic Acids in Complex Mixtures</i>	248
Southern Blotting Detects Specific DNA Fragments	248
Northern Blotting Detects Specific RNAs	249
Nuclease Protection Is Used to Quantitate Specific RNAs and Map the DNA Regions Encoding Them	249
Transcription Start Sites Can Be Mapped by S1 Protection and Primer Extension	251
<i>Designing Expression Systems That Produce Abundant Amounts of Specific Proteins</i>	252
Full-Length Proteins Encoded by Cloned Genes Can Be Produced in <i>E. coli</i> Expression Systems	252
Proteins with Post-Translational Modifications Can Be Produced in Eukaryotic Expression Systems	253
Proteins Encoded by Cloned Genes and cDNAs Can Be Expressed In Vitro	253
The Polymerase Chain Reaction: An Alternative to Cloning	254

From Protein to Gene and from Gene to Protein with Recombinant DNA Technology	256
<i>Summary</i>	257
<i>Review Questions</i>	258
<i>References</i>	260
8 GENETIC ANALYSIS IN CELL BIOLOGY	263
<i>The Isolation and Characterization of Mutants</i>	264
Mutations Are Recessive or Dominant	264
Mutations Involve Large or Small DNA Alterations	266
Mutations Occur Spontaneously and Can Be Induced	267
Some Human Diseases Are Caused by Spontaneous Mutations	268
Various Genetic Screens Are Used to Identify Mutants	269
Complementation Analysis Determines If Different Mutations Are in the Same Gene	274
Metabolic and Other Pathways Can Be Genetically Dissected	274
Suppressor Mutations Can Identify Genes Encoding Interacting Proteins	274
<i>Genetic Mapping of Mutations</i>	277
Segregation Patterns Indicate Whether Mutations Are on the Same or Different Chromosomes	277
Chromosomal Mapping Locates Mutations on Particular Chromosomes	277
Recombinational Analysis Can Map Genes Relative to Each Other on a Chromosome	279
DNA Polymorphisms Are Used to Map Human Mutations	279
Some Chromosomal Abnormalities Can Be Mapped by Banding Analysis	281
<i>Molecular Cloning of Genes Defined by Mutations</i>	284
Physical Maps of Human Chromosomes Y and 21 Have Been Constructed by Screening YAC Clones for Sequence-Tagged Sites	284
Physical and Genetic Maps Can Be Correlated	284
Physical Mapping of Selected Genomic Regions Is the First Step in Cloning Many Genes	285

Mutation-Defined Genes Are Identified in Candidate Regions by Comparing Mutant and Wild-Type DNA Structure and mRNA Expression

287

Protein Structure Is Deduced from cDNA Sequences

289

Gene Replacement and Transgenic Animals

291

Specific Sites in Cloned Genes Can Be Altered In Vitro

291

DNA Can Be Transferred into Eukaryotic Cells in Various Ways

292

Normal Genes Can Be Replaced with Mutant Alleles in Yeast and Mice

292

Foreign Genes Can Be Introduced into Plants and Animals

296

Gene Therapy Involves Use of Transgenes to Treat Genetic Diseases

299

Summary

300

Review Questions

301

References

302

► Part II

Control of Cellular Activity by the Nucleus

304

9 THE MOLECULAR ANATOMY OF GENES AND CHROMOSOMES

307

Molecular Definition of a Gene

308

Most Prokaryotic Genes Lack Introns and Those Encoding Related Proteins Form Operons, Which Produce Polycistronic mRNA

308

Most Eukaryotic Transcription Units Produce Monocistronic mRNAs

308

Simple Eukaryotic Transcription Units Give Rise to One mRNA

309

Complex Eukaryotic Transcription Units Give Rise to Alternative mRNAs

309

Some Genes Do Not Encode Protein

310

Organization of Genes on Chromosomes

311

Genomes of Higher Eukaryotes Contain Much “Nonfunctional” DNA

311

Cellular DNA Content Does Not Correlate with Phylogeny

312

About a Quarter to Half of All Eukaryotic Protein-Coding Genes Are Solitary

313

Gene Families Are Formed by Gene Duplication and Encode Homologous Proteins

313

Pseudogenes Are Duplicated Genes That Have Become Nonfunctional

314

rRNAs, tRNAs, and Histones Are Encoded by Tandemly Repeated Genes

315

Discovery of Repetitious DNA Fractions

316

Repeated DNA Reassociates More Rapidly Than Nonrepeated DNA

316

Reassociation Experiments Reveal Three Major Classes of Eukaryotic DNA

317

Simple-Sequence DNA

318

Higher Eukaryotes Contain Several Types of Simple-Sequence DNA

318

Most Simple-Sequence DNA Is Located in Specific Chromosomal Regions

319

Differences in Lengths of Simple-Sequence Tandem Arrays Permit DNA Fingerprinting

319

Immediate-Repeat DNA and Mobile DNA Elements

320

Movement of Bacterial Mobile Elements Is Mediated by DNA

323

Movement of Some Eukaryotic Mobile Elements Is Mediated by DNA

326

Two Major Categories of Retrotransposons Are Found in Eukaryotic Cells

328

Most Mobile Elements in Yeast Are Viral Retrotransposons

328

Copia Retrotransposons Are the Most Common *Drosophila* Mobile Elements

333

LINES and SINES, the Most Abundant Mobile Elements in Mammals, Are Nonviral Retrotransposons

334

Retrotransposed Copies of Cellular RNAs Are Present in Eukaryotic Chromosomes

336

Functional Rearrangements in Chromosomal DNA

338

Salmonella Flagellar Antigens Can Switch through Inversion of a Transcription-Control Region

338

Yeast Mating Types Can Switch by Gene Conversion

339

Trypanosome Surface Antigens Undergo Frequent Changes via Gene Conversion

341

Generalized DNA Amplification Produces Polytene Chromosomes

343

Localized DNA Amplification of rRNA and Other Genes Occurs in Some Eukaryotic Cells

343

Vertebrate Genes Encoding Antibodies Are Assembled from Gene Segments by Controlled Deletion of Intervening DNA	344
<i>Organizing Cellular DNA into Chromosomes</i>	344
Prokaryotic Chromosomes Contain Highly Compacted Circular DNA Molecules with a Single Replication Origin	344
Eukaryotic Nuclear DNA Associates with Highly Conserved Histone Proteins to Form Chromatin	346
Chromatin Exists in Extended and Condensed Forms	347
<i>Morphology and Functional Characteristics of Eukaryotic Chromosomes</i>	349
Chromosome Number and Shape Are Species Specific	349
Nonhistone Proteins Provide a Structural Scaffold for Long DNA Loops in Chromosomes	349
Chromatin Contains Small Amounts of DNA-Binding Proteins in Addition to Histones and Scaffold Proteins	354
Each Chromosome Contains One Linear DNA Molecule	354
Stained Chromosomes Have Characteristic Banding Patterns	354
Heterochromatin Consists of Chromosome Regions That Do Not Uncoil	355
Three Functional Elements Are Required for Replication and Stable Inheritance of Chromosomes	355
Yeast Artificial Chromosomes Can Be Used to Clone Megabase DNA Fragments	359
<i>Summary</i>	359
<i>Review Questions</i>	360
<i>References</i>	361
10 DNA REPLICATION, REPAIR, AND RECOMBINATION	365
<i>General Features of Chromosomal Replication</i>	366
DNA Replication Is Semiconservative	366
Most DNA Replication Is Bidirectional	366
DNA Replication Begins at Specific Chromosomal Sites	370
<i>DNA Replication in E. coli</i>	372

DnaA Protein Initiates Replication in <i>E. coli</i>	372
DnaB Is a Helicase That Unwinds Duplex DNA	372
Primase Catalyzes Formation of RNA Primers for DNA Synthesis	374
At a Growing Fork One Strand Is Synthesized Discontinuously from Multiple Primers	374
DNA Polymerase III Synthesizes Both the Leading and Lagging Strands	375
The Leading and Lagging Strands Are Synthesized Concurrently	376
Interaction of Tus Protein with Termination Sites Stops DNA Replication	378
<i>Eukaryotic DNA Replication</i>	378
Eukaryotic Proteins That Replicate SV40 DNA In Vitro Exhibit Similarities and Differences with <i>E. coli</i> Replication Proteins	378
Telomerase Prevents Progressive Shortening of Lagging Strands during DNA Replication	380
<i>Role of Topoisomerases in DNA Replication</i>	381
Type I Topoisomerases Relax DNA by Nicking and Closing One Strand of Duplex DNA	381
Type II Topoisomerases Change DNA Topology by Breaking and Rejoining Double-Stranded DNA	382
Replicated Circular DNA Molecules Are Decatenated by Type II Topoisomerases	383
Linear Daughter Chromatids Also Are Separated by Type II Topoisomerases	383
<i>Repair of DNA</i>	385
Proofreading by DNA Polymerase Corrects Copying Errors	385
Environmental DNA Damage Can Be Repaired by Several Mechanisms	386
Excision Repair in <i>E. coli</i> Removes Bulky Chemical Adducts Caused by UV Light and Carcinogens	387
Genetic Studies in Eukaryotes Have Identified DNA-Repair Genes	388
<i>Recombination between Homologous DNA Sites</i>	389

Holliday Recombination Model Is Supported by Observation of Predicted Intermediate Structures	389
Recombination in <i>E. coli</i> Occurs by Three Similar Pathways That All Require RecA Protein	391
Site-Specific Integration of λ Phage Mimics a Homologous Recombination Event	395
Studies in Yeast Are Providing Insights into Meiotic Recombination	396
Gene Conversion Can Occur near the Crossover Point during Reciprocal Recombination	396
<i>Summary</i>	400
<i>Review Questions</i>	401
<i>References</i>	402
11 REGULATION OF TRANSCRIPTION INITIATION	405
<i>Early Genetic Analysis of lac-Operon Control in E. coli</i>	406
Enzymes Encoded at <i>lac</i> Operon Can Be Induced and Repressed	407
Mutations in <i>lacI</i> Cause Constitutive Expression of the <i>lac</i> Operon	407
Operator Constitutive Mutations Identify Binding Site for <i>lac</i> Repressor	408
Mutations in Promoter Prevent Expression of <i>lac</i> Operon	409
Regulation of <i>lac</i> Operon Depends on Cis-Acting DNA Sequences and Trans-Acting Proteins	409
<i>Molecular Mechanisms of Transcription Initiation in Bacteria</i>	411
Induction of the <i>lac</i> Operon Leads to Increased Synthesis of <i>lac</i> mRNA	411
<i>E. coli</i> RNA Polymerase Generally Initiates Transcription at a Unique Position on DNA Template	411
Protein-Binding Sites in <i>lac</i> Control Region Have Been Identified by Sequence Comparison and Footprinting Experiments	412
RNA Polymerase Interacts with Specific Promoter Sequences	413
σ^{70} Subunit of RNA Polymerase Functions as an Initiation Factor	414
α -Subunit Dimer Bends to rRNA Promoters in -40 to -60 Region	416

Binding of <i>lac</i> Repressor to the <i>lac</i> Operator Blocks Transcription Initiation by RNA Polymerase	416
Most Bacterial Repressors Are Homodimers Containing α Helices That Insert into Adjacent Major Grooves of Operator DNA	418
Positive Control of the <i>lac</i> Operon Is Exerted by cAMP-CAP	421
Cooperative Binding of cAMP-CAP and RNA Polymerase to <i>lac</i> Control Region Activates Transcription	423
Control of Transcription from All Bacterial Promoters Involves Similar But Distinct Mechanisms	423
Transcription from Some Promoters Is Initiated by Alternative Sigma (σ) Factors	424
RNA Polymerase Containing σ^{54} Is Regulated by Proteins That Bind at Enhancer Sites Distant from the Transcription Initiation Site	425
<i>Eukaryotic Gene Control: Purposes and General Principles</i>	426
Most Genes in Higher Eukaryotes Are Regulated by Controlling Their Transcription	427
DNA Regulatory Sites Often Are Located Many Kilobases from Eukaryotic Transcription Start Sites	428
<i>Structure and Function of Eukaryotic Nuclear RNA Polymerases</i>	430
Three Eukaryotic Polymerases Catalyze Formation of Different RNAs	430
Eukaryotic RNA Polymerases Have Complex Subunit Structure	430
The Largest Subunit in RNA Polymerase II Has an Essential Carboxyl-Terminal Repeat	432
RNA Polymerase II Initiates Transcription at DNA Sequences Corresponding to the 5' Cap of mRNAs	433
<i>Cis-Acting Regulatory Sequences in Eukaryotic DNA</i>	435
The TATA Box Positions RNA Polymerase II for Transcription Initiation in Many Genes	435
Promoter-Proximal Elements Help Regulate Many Eukaryotic Genes	436

Transcription by RNA Polymerase II Often Is Stimulated by Distant Enhancer Sites	439
Most Eukaryotic Genes Are Regulated by Multiple Transcription-Control Elements	441
<i>Eukaryotic Transcription Factors</i>	442
Biochemical and Genetic Techniques Have Been Used to Identify Transcription Factors	442
Many Transcription Factors Are Modular Proteins Composed of Distinct Functional Domains	445
A Variety of Protein Structures Form the DNA-Binding Domains of Eukaryotic Transcription Factors	447
Heterodimeric Transcription Factors Increase Regulatory Diversity	452
A Diverse Group of Amino Acid Sequences Are Found in Activation Domains	452
<i>RNA Polymerase II Transcription-Initiation Complex</i>	453
Transcription-Initiation Complex Contains Many Proteins Assembled in a Specific Order	453
Transcription Activators Influence Assembly of Initiation Complex	456
Some Eukaryotic Regulatory Proteins Function as Repressors	456
<i>Regulating the Activity of Eukaryotic Transcription Factors</i>	456
Expression of Many Transcription Factors Is Restricted to Specific Cell Types	457
Some Transcription Factors Are Controlled by Lipid-Soluble Hormones	458
Polypeptide Hormones Signal Phosphorylation of Some Transcription Factors	462
<i>Influence of Chromatin Structure on Eukaryotic Transcription Initiation</i>	464
Association of Genes with Heterochromatin Can Lead to Their Repression	464
Transcriptionally Inactive DNA Regions Are Resistant to DNase I	466
Cytosine Methylation Is Associated with Inactive Genes in Vertebrates	468
<i>Transcription by RNA Polymerase I</i>	468
Pre-rRNA DNA from All Eukaryotes Is Similar	468

Only Essential Function of Polymerase I Is to Produce pre-rRNA	468
Species-Specific Initiation Factors Are Utilized by RNA Polymerase I	469
<i>Transcription by RNA Polymerase III</i>	470
tRNA Genes Bind Two Multisubunit Initiation Factors	471
5S-rRNA Gene Binds Three Initiation Factors	471
TBP Is Required for Transcription Initiation by All Three Eukaryotic RNA Polymerases	472
<i>Other Transcription Systems</i>	473
T7 and Related Bacteriophages Express Monomeric, Largely Unregulated RNA Polymerases	473
Mitochondrial DNA Transcription Exhibits Features Typical of Bacteriophage, Bacteria, and the Eukaryotic Nucleus	473
Chloroplasts Contain an RNA Polymerase Homologous to the <i>E. coli</i> Enzyme	474
Archaeabacteria Have an RNA Polymerase and Putative General Transcription Factors Similar to Those of the Eukaryotic Nucleus	475
<i>Summary</i>	475
<i>Review Questions</i>	478
<i>References</i>	480
12 TRANSCRIPTION TERMINATION, RNA PROCESSING, AND POSTTRANSCRIPTIONAL CONTROL	485
<i>Transcription Termination in Prokaryotes</i>	486
Rho-Independent Termination Sites Have Characteristic Sequences	486
Attenuation Can Cause Premature Chain Termination	486
Transcription Termination at Some Sites Requires Rho Factor	488
Antitermination Can Prevent Premature Chain Termination	490
<i>Eukaryotic Transcription-Termination Control</i>	491
HIV Tat Protein Is an RNA-Binding Antitermination Protein	492
Premature Termination of <i>c-myc</i> Transcription Occurs in Nondividing Cells	492

RNA Polymerase II Pauses during Transcription of <i>Drosophila</i> Heat-Shock Genes under Normal Conditions	492
<i>mRNA Processing in Higher Eukaryotes</i>	494
mRNA Precursors Are Associated with Abundant Nuclear Proteins Containing Conserved RNA-Binding Domains	494
HnRNP Proteins May Have Multiple Functions	496
Pre-mRNAs Are Cleaved at Specific 3' Sites and Rapidly Polyadenylated in Animal Cells	498
RNA-DNA Hybridization Reveals Spliced Out Introns	498
Splice Sites in Pre-mRNAs Exhibit Short, Conserved Sequences	500
Excision of Introns and Splicing of Exons in Pre-mRNA Occur via Two Transesterification Reactions	501
Small Nuclear Ribonucleoprotein Particles Assist in Splicing	501
Portions of Two Different RNAs Are Trans-Spliced in Some Organisms	508
Self-Splicing Group II Introns Provide Clues to Evolution of snRNPs	508
Regulation of RNA Processing Controls Expression of Some Proteins	509
<i>Subnuclear Organization and Transport of Nuclear mRNA to the Cytoplasm</i>	513
Most Transcription and RNA Processing Occurs in a Limited Number of Domains in Mammalian Cell Nuclei	513
Messenger Ribonucleoproteins (mRNPs) Exit the Nucleus through Nuclear Pore Complexes	515
5'-Cap Structures Are Recognized by the Nuclear Transport Mechanism	516
Pre-mRNAs Associated with Spliceosomes Are Not Transported to the Cytoplasm	518
mRNA Remains Associated with Protein in the Nucleus and Cytoplasm	518
Transport of mRNPs to the Cytoplasm Is Regulated by Some Viral Proteins	518
<i>Regulation of mRNA Cytoplasmic Localization, Stability, and Translation</i>	520
Some mRNAs Are Directed to Specific Cytoplasmic Sites by Sequences in Their 3' Untranslated Regions	521
Stability of Cytoplasmic mRNAs Varies Widely	522
Degradation Rate of Some Eukaryotic mRNAs Is Regulated	524
Translation of a Few mRNAs Is Regulated by Specific RNA-Binding Proteins	525
Antisense RNA Regulates Translation of Transposase mRNA in Bacteria	527
<i>Processing of rRNAs and tRNAs</i>	528
Pre-rRNA Binds Proteins, Then Is Cleaved and Methylated in the Nucleolus	528
Pre-rRNA Genes Act as Nucleolar Organizers	530
Self-Splicing Group I Introns in Some Pre-rRNAs Were the First Examples of Catalytic RNA	530
Processing of Pre-tRNA Involves Cleavage, Modification of Bases, and Sometimes a Unique Type of Splicing	532
<i>RNA Editing</i>	535
RNA Editing Regulates Protein Function in Mammals	535
RNA Editing in Trypanosome Mitochondria Drastically Alters mRNA Sequences	536
<i>Summary</i>	537
<i>Review Questions</i>	539
<i>References</i>	540
13 GENE CONTROL IN DEVELOPMENT	543
<i>Lysogeny or Lysis in λ-Phage Infection of <i>E. coli</i></i>	544
Phage Mutants Unable to Undergo Lysogeny Fall into Three Main Complementation Groups	544
cI Protein Maintains Lysogeny by Repressing and Activating Transcription from Different Promoters	545
cII and cIII Proteins Are Critical to Establishment of Lysogeny	547
Induction of Lytic Cycle Requires Derepression of <i>cro</i> Gene	548
Cro and cI Have Similar DNA-Binding Domains But Interact Differently with λ Operators	549
Choice between Lysis and Lysogeny Involves Regulatory Mechanisms Found in More Complex Developmental Systems	550

<i>Cell-Type Specification and Mating-Type Conversion in Yeast</i>	550
Cell Type-Specific Gene Expression in Yeast Is Regulated by Numerous DNA-Binding Proteins	551
Mating-Type Conversion Is Determined by Transcriptional Regulation of the <i>HO</i> Locus	554
Silencer Elements Repress Expression at <i>HML</i> and <i>HMR</i>	556
<i>Myogenesis in Mammals</i>	556
Embryonic Somites Give Rise to Myoblasts, the Precursors of Skeletal Muscle Cells	557
Certain Fibroblasts Can Be Converted into Muscle (Myotubes)	558
The <i>myoD</i> Gene Can Trigger Muscle Development	558
Myogenic Proteins Are HLH Transcription Factors	560
Myogenic Gene Activation Depends on Specific Amino Acids in MyoD	560
Id Protein Inhibits Activity of MyoD	560
Knockout Experiments Have Demonstrated Role of Myogenic Proteins In Vivo	560
<i>Neurogenesis in Drosophila and Mice</i>	561
<i>Drosophila</i> Sensory Hairs Arise from Proneural Clusters, Which Express Achaete and Scute Proteins	562
A Single Sensory Organ Precursor Develops from a Proneural Cluster in <i>Drosophila</i>	562
<i>Drosophila</i> Neurogenesis and Mammalian Myogenesis May Occur via Analogous Pathways Involving HLH Proteins	562
MASH1, a Homolog of Achaete and Scute Proteins, Regulates Neurogenesis in the Mouse	562
Specification of Other Cell Types Is Controlled by Different Classes of Transcription Factors	565
<i>Regional Specification during Drosophila Embryogenesis</i>	565
<i>Drosophila</i> Has Two Life Forms	565
Patterning Information Is Generated during Oogenesis and Early Embryogenesis	565
Morphogens Regulate Development as a Function of Their Concentration	568
Four Maternal Gene Systems Regulate Regionalization in the Early Embryo	568
Specification of the Anterior Region Depends on the Maternal <i>bicoid</i> Gene	568
Protein Encoded by Maternal <i>nanos</i> Gene Represses Translation of <i>hunchback</i> mRNA in Posterior Region	572
Hunchback Protein Regulates Expression of Several Gap Genes along the Anteroposterior Axis	573
Initial Patterning along Dorsal-Ventral Axis Depends on Dorsal Protein	573
Maternal Terminal Genes Regulate Early Patterning of the Extreme Anterior and Posterior Ends of the Embryo	575
Subsequent Anteroposterior Patterning Is Regulated by a Cascade of Transcription Factors Expressed from Three Groups of Zygotic Genes	576
Selector Genes Control Regional Identity and Development of Adult Structures	581
<i>Mammalian Homologs of Drosophila ANT-C and BX-C</i>	584
Mammalian Hox Genes Are Colinear Homologs of <i>Drosophila</i> HOM-C Genes	584
Mutations in Hox Genes Result in Homeotic Transformations in the Developing Mouse	585
<i>Summary</i>	587
<i>Review Questions</i>	588
<i>References</i>	590
► Part III Building and Fueling the Cell	
14 MEMBRANE STRUCTURE: THE PLASMA MEMBRANE	592
General Architecture of Lipid Membranes	596
All Membranes Contain Phospholipids and Proteins	596
The Phospholipid Bilayer Is the Basic Structural Unit of Biological Membranes	599
Phospholipid Bilayers Exhibit Two-Dimensional Fluidity That Depends on Temperature and Composition	599
Several Types of Evidence Point to the Universality of the Phospholipid Bilayer	602
Phospholipid Bilayers and Biological Membranes Form Closed Compartments	603

<i>Membrane Proteins</i>	604
Proteins Interact with Membranes in Different Ways	604
Transmembrane Proteins Contain Long Segments of Hydrophobic Amino Acids Embedded in the Phospholipid Bilayer	604
Proteins Can Be Removed from Membranes by Detergents or High-Salt Solutions	604
Many Integral Proteins Contain Multiple Transmembrane α Helices	606
Porins Are Transmembrane Proteins Composed of Multiple β Strands	609
Some Integral Proteins Are Bound to the Membrane by Covalently Attached Hydrocarbon Chains	610
Interfacial Catalysis Involves Soluble Enzymes Acting at Membrane Surfaces	612
The Orientation of Proteins in Membranes Can Be Experimentally Determined	612
<i>Glycoproteins and Glycolipids</i>	612
Many Integral Proteins Contain Sugars Covalently Linked to Their Exoplasmic Domains	613
Many Glycolipids Are Located in the Cell-Surface Membrane	614
<i>Principles of Membrane Organization</i>	615
All Integral Proteins Bind Asymmetrically to the Lipid Bilayer	615
The Two Membrane Leaflets Have Different Lipid Compositions	616
Freeze-Fracture and Deep-Etching Techniques Reveal the Two Membrane Faces in Electron Microscopy	616
Most Integral Proteins and Lipids Are Laterally Mobile in Biomembranes	616
Some Membrane Proteins Interact with Cytoskeletal Components	616
Erythrocytes Have an Unusual Plasma Membrane That Is Tightly Anchored to the Cytoskeleton	620
<i>Specializations of the Plasma Membrane</i>	623
Plasma Membranes of Polarized Cells Are Divided into Two Regions with Different Compositions and Functions	623
Tight Junctions Seal Off Body Cavities and Restrict Diffusion of Membrane Components	625
Desmosomes and Gap Junctions Interconnect Cells and Control Passage of Molecules between Them	628
<i>Summary</i>	628
<i>Review Questions</i>	629
<i>References</i>	631
15 TRANSPORT ACROSS CELL MEMBRANES	633
<i>Major Types of Membrane Transport Proteins</i>	634
<i>Diffusion of Small Molecules across Pure Phospholipid Bilayers</i>	635
<i>Uniporter-Catalyzed Transport of Specific Molecules</i>	636
Three Main Features Distinguish Uniport Transport from Passive Diffusion	637
Two General Models Have Been Proposed for Transporters	638
Glucose Entry into Erythrocytes Is Mediated by a Uniporter	638
<i>Ion Channels, Intracellular Ion Environment, and Membrane Electric Potential</i>	640
Ionic Gradients and Electric Potential Are Maintained across the Plasma Membrane	640
Certain K^+ Channels Generate the Membrane Electric Potential	641
Ion Concentration Gradients and Electric Potential Drive the Movement of Ions across Biological Membranes	643
<i>Active Ion Transport and ATP Hydrolysis</i>	644
Ion Pumps Can Be Grouped into Three Classes (P, V, and F)	644
Ca^{2+} ATPase Maintains Low Cytosolic Ca^{2+} Concentration	645
Coupling of ATP Hydrolysis and Ion Pumping by P-Class ATPases Involves an Ordered Kinetic Mechanism	647
Na^+/K^+ ATPase Maintains the Intracellular Concentrations of Na^+ and K^+ in Animal Cells	648
V-Class H^+ ATPases Pump Protons across Lysosomal and Vacuolar Membranes	650
The Multidrug-Transport Protein is an ATP-Powered Pump and ATP-Dependent Cl^- Channel	651
<i>Cotransport Catalyzed by Symporters and Antiporters</i>	652
Na^+ -Linked Symporters Import Amino Acids and Glucose into Many Animal Cells	652

Na ⁺ -Linked Antiporter Exports Ca ²⁺ from Cells	654
Band 3 Is an Anion Antiporter That Exchanges Cl ⁻ and HCO ₃ ⁻ across the Erythrocyte Membrane	655
H ⁺ /K ⁺ ATPase and Anion Antiporter Combine to Acidify the Stomach Contents While Maintaining Cytosolic pH Near Neutrality	657
Several Symporters and Antiporters Regulate Cytosolic pH	658
<i>Plant and Prokaryotic Membrane Transport Proteins</i>	659
H ⁺ Pumps and Anion Channels Establish Electric Potential and a Steep H ⁺ Concentration Gradient across the Plant-Vacuole Membrane	659
Proton Antiporters Enable Plant Vacuoles to Accumulate Metabolites and Ions	659
The Potential across the Plasma Membrane of Plant, Bacterial, and Fungal Cells Is Generated by Proton Pumping	660
Proton Symporters Import Many Nutrients into Bacteria	660
<i>Osmosis, Water Channels, and the Regulation of Cell Volume</i>	661
Osmotic Pressure Causes Water Movement across Membranes	662
Water Channels Are Necessary for Bulk Osmotic Flow of Water across Membranes	663
Some Animal Cells Regulate Their Volume by Modulating Their Internal Osmotic Strength	663
Changes in Intracellular Osmotic Pressure Cause Leaf Stomata to Open	664
<i>Summary</i>	665
<i>Review Questions</i>	666
<i>References</i>	667
16 SYNTHESIS AND SORTING OF PLASMA MEMBRANE, SECRETORY, AND LYSOSOMAL PROTEINS	
<i>The Synthesis of Membrane Lipids</i>	669
Phospholipids Are Synthesized in Association with Membranes	671
Special Membrane Proteins Allow Phospholipids to Equilibrate in Both Membrane Leaflets	671

Phospholipids Move from the ER to Other Cellular Membranes	673
<i>Sites of Synthesis of Organelle and Membrane Proteins</i>	674
All Nuclear-Encoded Proteins Are Made by the Same Cytosolic Ribosomes	675
Membrane-Attached and Membrane-Unattached Ribosomes Synthesize Different Proteins	676
<i>Overall Pathway for Synthesis of Secretory, Lysosomal, and Membrane Proteins</i>	676
Newly Made Secretory Proteins Are Localized to the Lumen of the Rough ER	676
Many Organelles Participate in Protein Secretion	677
All Secretory Proteins Move from the Rough ER to Golgi Vesicles to Secretory Vesicles	677
The Steps in Protein Secretion Can Be Studied Genetically	678
Plasma Membrane Glycoproteins Follow the Same Maturation Pathway as Continuously Secreted Proteins	680
<i>The Transport of Secretory and Membrane Proteins into or across the ER Membrane</i>	681
A Signal Sequence on Nascent Secretory Proteins Targets Them to the ER and Is then Cleaved Off	682
Several Receptor Proteins Mediate the Interaction of Signal Sequences with the ER Membrane	683
Polypeptides Cross the ER Membrane in Protein-Lined Channels	686
ATP-Hydrolyzing Chaperone Proteins Prevent Protein Misfolding and Are Essential for Translocation of Secretory Proteins into the ER	687
Topogenic Sequences in Integral Membrane Proteins Allow Them to Achieve Their Proper Orientation in the ER Membrane	688
<i>Post-Translational Modifications of Secretory and Membrane Proteins in the Rough ER</i>	694
Disulfide Bonds Are Formed in the ER Lumen Soon after Synthesis	694
Chaperone Proteins Facilitate the Folding of Newly Made Proteins	695

The Formation of Oligomeric Proteins Occurs in the ER	696
<i>Quality Control in the ER</i>	697
Only Properly Folded Proteins Are Transported from the Rough ER to the Golgi Complex	697
Unassembled or Misfolded Proteins Are Often Degraded within the ER	698
ER-Specific Proteins Are Retained in the Rough ER or Are Returned There from the Cis-Golgi	698
<i>Protein Glycosylation: Discrete Steps in the ER and Golgi Complex</i>	699
Different Structures Characterize N- and O-Linked Oligosaccharides	699
Nucleotide Sugars Are the Precursors of Oligosaccharides	700
O-Linked Oligosaccharides Are Formed by the Sequential Addition of Sugars	703
The ER and Golgi Membranes Contain Transporters for Nucleotide Sugars	703
The Diverse N-Linked Oligosaccharides Share Certain Structural Features That Reflect a Common Precursor	704
The Processing N-Linked Oligosaccharides Involves the Sequential Removal and Addition of Sugar Residues	704
Modifications to N-Linked Oligosaccharides Are Completed in the Golgi Vesicles	706
The Movement of Proteins through the Secretory Pathway Can Be Monitored by Following the Processing of N-Linked Oligosaccharides	707
N-Linked and O-Linked Oligosaccharides May Stabilize Maturing Secretory and Membrane Proteins	708
Phosphorylated Mannose Residues Target Proteins to Lysosomes	709
Genetic Defects Have Elucidated the Role of Mannose Phosphorylation	711
<i>The Mechanism and Regulation of Vesicular Transport to and from the ER and the Golgi Complex</i>	711
Two Types of Coated Vesicles Transport Proteins from Organelle to Organelle	711
Clathrin Forms a Lattice Shell around Coated Pits and Vesicles	711
A Chaperone Protein Catalyzes the Depolymerization of Clathrin-Coated Vesicles	713
A Type of Coated Vesicle without Clathrin Mediates ER-to-Golgi Transport and Transport within the Golgi	713
The Steps in Vesicular Transport Can Be Studied Biochemically and Genetically	714
A Family of Small GTP-Binding Proteins May Target Transport Vesicles to Their Correct Destinations	716
<i>Golgi and Post-Golgi Sorting and Processing of Membrane and Secretory Proteins</i>	718
Sequences in the Membrane-Spanning Domain Cause the Retention of Proteins in the Golgi	719
Different Vesicles Are Used for Continuous and Regulated Protein Secretion	719
Secretory and Membrane Proteins Undergo Several Proteolytic Cleavages During the Late Maturation Stages	720
The Proteolytic Maturation of Insulin Occurs in Acidic, Clathrin-Coated Secretory Vesicles	722
<i>Sorting of Membrane Proteins Internalized from the Cell Surface</i>	722
In Receptor-Mediated Endocytosis, Cell Surface Receptors Are Internalized in Clathrin-Coated Vesicles	722
The Low-Density Lipoprotein (LDL) Receptor Binds and Internalizes Cholesterol-Containing Particles	724
Mutant LDL Receptors Reveal a Signal for Internalizing Receptors into Clathrin-Coated Pits	724
Receptors and Ligands Dissociate in an Acidic Late Endosome/CURL Organelle	726
Transferrin Delivers Iron to Cells by Receptor-Mediated Endocytosis	727
Some Proteins Internalized by Endocytosis Remain within the Cell, or Are Transported across the Cell and Secreted	728
Proteins Are Sorted in Several Different Ways to Different Domains of the Plasma Membrane	729
Viruses and Toxins Enter Cells by Receptor-Mediated Endocytosis	731
<i>Summary</i>	734
<i>Review Questions</i>	735
<i>References</i>	737

17	CELLULAR ENERGETICS: FORMATION OF ATP BY GLYCOLYSIS AND OXIDATIVE PHOSPHORYLATION	739
	<i>Energy Metabolism in the Cytosol</i>	
	In Glycolysis, ATP Is Generated by Substrate-Level Phosphorylation	740
	Some Eukaryotic and Prokaryotic Cells Metabolize Glucose Anaerobically	742
	<i>Mitochondria and the Metabolism of Carbohydrates and Lipids</i>	744
	The Outer and Inner Membranes of the Mitochondrion Are Structurally and Functionally Distinct	745
	Acetyl CoA Is a Key Intermediate in the Mitochondrial Metabolism of Pyruvate and Fatty Acids	746
	The Citric Acid Cycle Oxidizes the Acetyl Group of Acetyl CoA to CO_2 and Reduces NAD and FAD to NADH and FADH_2	747
	Electrons Are Transferred from NADH and FADH_2 to Molecular O_2 by Electron-Carrier Proteins	748
	A Similar Electrochemical Protein Gradient Is Used to Generate ATP from ADP and P_i in Mitochondria, Bacteria, and Chloroplasts	749
	<i>The Proton-Motive Force, ATP Generation, and Transport of Metabolites</i>	750
	Closed Vesicles Are Required for the Generation of ATP	751
	The Proton-Motive Force Is Composed of a Proton Concentration Gradient and a Membrane Electric Potential	752
	The F_0F_1 Complex Couples ATP Synthesis to Proton Movement Down the Electrochemical Gradient	753
	Reconstitution of Close Membrane Vesicles Supports the Role of the Proton-Motive Force in ATP Synthesis	754
	Many Transporters in the Inner Mitochondrial Membrane Are Powered by the Proton-Motive Force	755
	Inner-Membrane Proteins Allow the Uptake of Electrons from Cytosolic NADH	756
	<i>NADH, Electron Transport, and Proton Translocation</i>	757
	Electron Transport in Mitochondria Is Coupled to Proton Translocation	758
	The Mitochondrial Electron Transport Chain Transfers Electrons from NADH to O_2	759
		761

	Most Electron Carriers Are Oriented in the Transport Chain in the Order of Their Reduction Potentials	765
	Three Electron Transport Complexes Are Sites of Proton Translocation	766
	The Q Cycle Increases the Number of Protons Transported by the CoQH_2 -Cytochrome C Reductase Complex	767
	The Cytochrome C Oxidase Complex Couples the Reduction of Oxygen to the Translocation of Protons	768
	<i>Metabolic Regulation</i>	770
	Respiration Is Controlled by the Production of ATP through the Proton-Motive Force	770
	An Endogenous Uncoupler in Brown-Fat Mitochondria Converts H^+ Gradients to Heat	770
	The Rate of Glycolysis Depends on the Cell's Need for ATP and Is Controlled by Multiple Allosteric Effectors	771
	The Oxidation of Fatty Acids Occurs in Peroxisomes without Production of ATP	772
	<i>Summary</i>	773
	<i>Review Questions</i>	774
	<i>References</i>	776
18	PHOTOSYNTHESIS	779
	<i>An Overview of Photosynthesis</i>	780
	Photosynthesis Occurs on Thylakoid Membranes	780
	Photosynthesis Consists of Both "Light" and "Dark" Reactions	782
	<i>The Light-Absorbing Step of Photosynthesis</i>	783
	Each Photon of Light Has a Defined Amount of Energy	783
	Chlorophyll <i>a</i> Is the Primary Light-Absorbing Pigment	783
	The Absorption of Light by Reaction-Center Chlorophylls Causes a Charge Separation across the Thylakoid Membrane	784
	<i>Molecular Analysis of Bacterial Photosynthesis</i>	786
	Purple Photosynthetic Bacteria Utilize Only One Photosystem and Do Not Evolve O_2	786

	Photoelectron Transport in the Photosynthetic Reaction Center of Purple Bacteria Results in a Charge Separation	788
	Photosynthetic Bacteria also Carry Out Noncyclic Electron Transport	790
	<i>Molecular Analysis of Photosynthesis in Plants</i>	790
	Plants Utilize Two Photosystems, PSI and PSII, with Different Functions in Photosynthesis	790
	Both PSI and PSII Are Essential for Photosynthesis in Chloroplasts	792
	PSII Splits H_2O	793
	Electrons Are Transported from PSII to PSI	794
	PSI Forms NADPH	796
	PSI Can Also Function in Cyclic Electron Flow	796
	PSI and PSII Are Functionally Coupled	796
	<i>CO₂ Metabolism during Photosynthesis</i>	797
	CO ₂ Fixation Is Catalyzed by Ribulose 1,5-Bisphosphate Carboxylase	797
	CO ₂ Fixation Is Activated in the Light	800
	Photorespiration Liberates CO ₂ and Consumes O ₂	800
	Peroxisomes Play a Role in Photorespiration	800
	The C ₄ Pathway for CO ₂ Fixation Is Used by Several Tropical Plants	802
	Sucrose Is Transported from Leaves through the Phloem to All Plant Tissues	803
	<i>Summary</i>	805
	<i>Review Questions</i>	806
	<i>References</i>	807
19	ORGANELLE BIOGENESIS: THE MITOCHONDRION, CHLOROPLAST, PEROXISOME, AND NUCLEUS	809
	<i>An Overview of Organelle Biogenesis Outside the Secretory Pathway</i>	810
	<i>Mitochondrial DNA: Structure, Expression, and Variability</i>	812
	Cytoplasmic Inheritance and DNA Sequencing Have Established the Existence of Mitochondrial Genes	812
	The Size and Coding Capacity of mtDNA Varies in Different Organisms, Reflecting Evolutionary Movement of DNA between Mitochondrion and Nucleus	813

	Proteins Encoded by Mitochondria DNA Are Synthesized on Mitochondrial Ribosomes	816
	Mitochondrial Genetic Codes Are Different from the Standard Nuclear Code, and They Differ among Organisms	816
	In Animals, Mitochondrial RNAs Undergo Extensive Processing	817
	Mutations in Mitochondrial DNA Cause Several Genetic Diseases in Man	817
	<i>Synthesis and Localization of Mitochondrial Proteins</i>	819
	Most Mitochondrial Proteins Are Synthesized in the Cytosol as Precursors	819
	Matrix-Targeting Sequences Direct Imported Proteins to the Mitochondrial Matrix	820
	Mitochondrial Receptors Bind Matrix-Targeting Sequences	824
	Intermediates in Translocation of Proteins into the Mitochondrion Can Be Accumulated and Studied	824
	The Uptake of Mitochondrial Proteins Requires Energy	824
	Matrix Chaperones Are Essential for the Import and Folding of Mitochondrial Proteins	826
	Proteins Are Targeted to the Correct Submitochondrial Compartment by Multiple Signals and Several Pathways	827
	Certain Mitochondrial Proteins Are Essential for Life	829
	The Synthesis of Mitochondrial Proteins Is Coordinated	829
	<i>Chloroplast DNA and the Biogenesis of Chloroplasts and Other Plastids</i>	830
	Chloroplast DNA Contains over 120 Different Genes	830
	Several Uptake-Targeting Sequences Direct Proteins Synthesized in the Cytosol to the Appropriate Chloroplast Compartment	832
	Proplastids Can Differentiate into Chloroplasts or Other Plastids	835
	<i>Peroxisome Biosynthesis</i>	837
	All Peroxisomal Proteins Are Imported from the Cytosol	837
	Genetic Diseases Have Helped to Elucidate the Process of Peroxisome Biogenesis	838

<i>Protein Traffic into and out of the Nucleus</i>	840	Analogs Provide Information about Essential Features of Hormone Structure and Are Useful as Drugs	871	Ras-Coupled RTKs Transduce Extracellular Signals by a Common Pathway	896	<i>Summary</i>	918
Nuclear Proteins Are Selectively Imported into Nuclei	840	Studies with Mutant β -Adrenergic Receptors Identify Residues That Interact with Catecholamines	872	Yeast Mating-Factor Receptors Are Linked to G Proteins That Transmit Signals to MAP Kinase	897	<i>Review Questions</i>	920
Nuclear Pores Are the Portals for Protein Transport	841	Trimeric Signal-Transducing G _s Protein Links β -Adrenergic Receptors and Adenylyl Cyclase	873	<i>Other Important Second Messengers</i>	899	<i>References</i>	922
Multiple Types of Nuclear Localization Sequences Direct Proteins and Ribonucleoproteins to the Nucleus	842	G _s _α Belongs to GTPase Superfamily of Intracellular Switch Proteins	876	Cellular Effects of Ca ²⁺ Depend on Its Cytosolic Level and Often Are Mediated by Calmodulin	899	21 NERVE CELLS	925
Receptor Proteins in Nuclear Pores Bind Nuclear Proteins for Import	844	Some Bacterial Toxins Irreversibly Modify G Proteins	877	Ca ²⁺ Ions and cAMP Induce Hydrolysis of Muscle Glycogen	901	<i>Neurons, Synapses, and Nerve Circuits</i>	926
<i>Summary</i>	844	Adenylate Cyclase Is Stimulated and Inhibited by Different Receptor-Ligand Complexes	879	Inositol 1,4,5-Trisphosphate Causes the Release of Ca ²⁺ Ions from the ER	901	Specialized Regions of Neurons Carry Out Different Functions	926
<i>Review Questions</i>	845	Analogous Regions in All Seven-spanning Receptors Determine G Protein and Ligand Specificity	881	Release of Intracellular Ca ²⁺ Stores Also Is Mediated by Ryanodine Receptors in Muscle Cells and Neurons	904	Synapses Are Specialized Sites Where Neurons Communicate with Other Cells	929
<i>References</i>	847	Degradation of cAMP Also Is Regulated	881	1,2-Diacylglycerol Activates Protein Kinase C	904	Neurons Are Organized into Circuits	931
►Part IV		<i>Role of cAMP in the Regulation of Cellular Metabolism</i>	881	<i>Multiplex Signaling Pathways</i>	905	<i>The Action Potential and Conductance of Electric Impulses</i>	932
Integrative and Specialized Cellular Events	850	cAMP and Other Second Messengers Activate Specific Protein Kinases	881	Some Activated RTKs Stimulate Activity of Phospholipase C _γ	905	The Resting Potential Is Generated Mainly by Open Potassium Channels	933
20 CELL-TO-CELL SIGNALING: HORMONES AND RECEPTORS	853	Epinephrine Stimulates Glycogenolysis in Liver and Muscle Cells	882	Multiple G Proteins Transduce Signals from Seven-Spanning Receptors to Different Effector Proteins	905	Opening and Closing Ion Channels Cause Specific, Predictable Changes in the Membrane Potential	935
<i>Overview of Extracellular Signaling</i>	854	cAMP-Dependent Protein Kinase Regulates the Enzymes of Glycogen Metabolism	884	G _{βγ} Acts Directly on Some Effectors in Mammalian Cells	906	Membrane Depolarizations Would Spread Only Short Distances without Voltage-Gated Cation Channels	935
Signaling Molecules Operate over Various Distances in Animals	855	Kinase Cascade Permits Multienzyme Regulation and Amplifies Hormone Signal	885	<i>The Insulin Receptor and Regulation of Blood Glucose</i>	907	Opening of Voltage-Gated Sodium Channels Depolarizes the Nerve Membrane during Conductance of an Action Potential	936
Receptor Proteins Exhibit Ligand-Binding Specificity and Effector Specificity	856	Cellular Responses to cAMP Vary among Different Cell Types	885	Insulin Has Short-Term Effects on Glucose Metabolism and Long-Term Growth-Promoting Effects	907	Voltage-Dependent Sodium Channel Proteins Propagate Action Potentials Unidirectionally without Diminution	938
Hormones Can Be Classified Based on Their Solubility and Receptor Location	856	<i>Receptor Tyrosine Kinases</i>	886	Insulin Signaling Pathway Involves a Soluble “Relay” Protein That Does Not Bind to the Receptor	910	Opening of Voltage-Gated Potassium Channels Causes Repolarization of the Plasma Membrane during an Action Potential	938
Effects of Many Hormones Are Mediated by Second Messengers	857	SH2-Containing Proteins Bind to Specific Phosphotyrosine Residues in Activated RTKs	886	Insulin and Glucagon Work Together to Maintain a Stable Blood Glucose Level	911	Movements of Only a Few Sodium and Potassium Ions Generate the Action Potential	939
Cell-Surface Receptors Can Be Categorized into Four Major Classes	859	Ras Protein Is a Key Component of RTK Signaling Pathways in Many Eukaryotes	887	<i>Regulation of Cell-Surface Receptors</i>	912	Myelination Increases the Rate of Impulse Conduction	940
The Synthesis, Release, and Degradation of Hormones Are Regulated	860	Genetic Analysis of <i>Drosophila</i> Eye Development Identified Three Proteins That Link RTKs to a Kinase Cascade	891	Receptors for Many Peptide Hormones Are Down-Regulated by Endocytosis	912	Action Potentials Are Generated in an All-or-Nothing Fashion by Summation of Electric Disturbances	943
<i>Identification and Purification of Cell-Surface Receptors</i>	865	GRB2 Is an Adapter Protein That Binds to Activated RTKs	893	Phosphorylation of Cell-Surface Receptors Modulates Their Activity	913	<i>Molecular Properties of Voltage-Gated Ion Channel Proteins</i>	943
Hormone Receptors Are Detected by Binding Assays	865	Sos Protein Is Localized to the Plasma Membrane by Binding to the SH3 Domains in GRB2	893	<i>From Plasma Membrane to Nucleus</i>	914	Patch Clamps Permit Measurement of Ion Movements through Single Sodium and Potassium Channels	944
K _D Values for Cell-Surface Hormone Receptors Approximate the Concentrations of Circulating Hormones	866	A Highly Conserved Kinase Cascade Transmits RTK-Mediated Signals Downstream from Ras	894	Activation of Some Transcription Factors Occurs via Several Signaling Pathways Coupled to G Protein-Linked Receptors and RTKs	914	All Voltage-Gated Ion Channels Have a Similar Molecular Structure	946
Affinity Techniques Permit Purification of Receptor Proteins	866			STATs Are Transcription Factors Activated by Protein Tyrosine Kinases Associated with Cell-Surface Receptors	916		
Many Receptors Can Be Cloned without Prior Purification	867						
<i>Seven-spanning G Protein-Linked Receptors</i>	869						
Binding of Epinephrine to β - and α -Adrenergic Receptors Induces Tissue-Specific Responses Mediated by cAMP	870						

<i>Shaker</i> Mutants in <i>Drosophila melanogaster</i> Led to the Cloning of a Large Family of Voltage-Gated Potassium Channel Proteins	947	Hydrolysis of Acetylcholine Terminates the Depolarization Signal	965
Study of Toxin-Resistant Mutants Led to the Identification of Amino Acids That Line the Ion-Conducting Pore of the Potassium Channel	948	<i>Functions of Other Neurotransmitters, Their Receptors, and Their Transporters</i>	965
A Complete <i>shaker</i> K ⁺ Channel Is Assembled from Four Subunits	949	GABA and Glycine Receptors Are Ligand-Gated Anion Channels Used at Many Inhibitory Synapses	966
The S4 Segment Comprises the Voltage Sensor	949	Cardiac Muscarinic Acetylcholine Receptor Activates a G Protein and Open Potassium Channels	967
The N-terminal Segment of the <i>shaker</i> Protein Causes Channel Inactivation	949	Different Catecholamine Receptors Affect Different Intracellular Second Messengers	967
Potassium Channel Proteins Are Diverse	950	A Serotonin Receptor Modulates Potassium Channel Function via the Activation of Adenylate Cyclase	968
The Sodium Channel Protein Has Four Homologous Transmembrane Domains, Each Similar to a Potassium Channel Polypeptide	951	Neurotransmitter Transporters Are the Proteins Affected by Drugs Such as Cocaine	970
All Voltage-Gated Ion Channel Proteins Probably Evolved from a Common Ancestral Gene	951	Some Peptides Function as Both Neurotransmitters and Neurohormones	970
<i>Synapses and Impulse Transmission</i>	952	Endorphins and Enkephalins Are Neurohormones That Inhibit Transmission of Pain Impulses	971
Impulse Transmission across Electric Synapses Is Nearly Instantaneous	952	<i>Sensory Transduction: The Visual and Olfactory Systems</i>	971
Chemical Synapses Can Be Fast or Slow, Excitatory or Inhibitory, and Can Exhibit Signal Amplification and Computation	953	The Light-Triggered Closing of Sodium Channels Hyperpolarizes Rod Cells	972
Many Types of Receptors Bind the Same Neurotransmitter	955	Absorption of a Photon Triggers Isomerization of Retinal and Activation of Opsin	974
<i>Synaptic Transmission and the Nicotinic Acetylcholine Receptor</i>	956	Cyclic GMP Is a Key Transducing Molecule	975
Acetylcholine Is Synthesized in the Cytosol and Stored in Synaptic Vesicles	956	Rod Cells Adapt to Varying Levels of Ambient Light	976
Exocytosis of Synaptic Vesicles Is Triggered by Opening of Voltage-Gated Calcium Channels and a Rise in Cytosolic Calcium	958	Color Vision Utilizes Three Opsin Pigments	977
Multiple Proteins Align Synaptic Vesicles with the Plasma Membrane and Participate in Vesicle Exocytosis and Endocytosis	960	More Than a Thousand Different G-Protein-Coupled Receptors Detect Odors	978
The Nicotinic Acetylcholine Receptor Protein Is a Ligand-Gated Cation Channel	962	<i>Memory and Neurotransmitters</i>	979
Spontaneous Exocytosis of Synaptic Vesicles Produces Small Depolarizations in the Postsynaptic Membrane	962	Mutations in <i>Drosophila</i> Affect Learning and Memory	979
The Nicotinic Acetylcholine Receptor Contains Five Subunits, Each of Which Contributes to the Cation Channel	963	Gill-Withdrawal Reflex in <i>Aplysia</i> Exhibits Three Elementary Forms of Learning	979
		A Novel Glutamate Receptor Is the Coincidence Detector in Long-Term Potentiation Exhibited by Many Synapses in the Mammalian Brain	982

Retrograde Signaling by the Gas Nitric Oxide May Be a Part of Long-Term Potentiation	982	A Family of Actin-Severing Proteins Generates New Filament Ends by Breaking Actin Filaments	1007
Mice Defective in the Hippocampal Ca ²⁺ -Calmodulin-Activated Protein Kinase Are Impaired in Long-Term Potentiation and in Spatial Learning—the Beginnings of a Molecular Psychology	984	Actin Filaments Are Stabilized by Actin-Capping Proteins	1009
<i>Summary</i>	984	Many Movements Are Driven by Actin Polymerization	1010
<i>Review Questions</i>	986	<i>Myosin: A Cellular Engine That Powers Motility</i>	1012
<i>References</i>	987	Myosin Is a Diverse Family of Proteins Characterized by Distinct Head, Neck, and Tail Domains	1014
22 MICROFILAMENTS: CELL MOTILITY AND CONTROL OF CELL SHAPE	991	The Myosin Tail Domain Regulates Binding to Membranes or the Assembly of Thick Filaments	1015
<i>Actin Filaments</i>	992	The Myosin Head Domain Is an Actin-Activated ATPase	1015
All Eukaryotic Cells Contain Abundant Amounts of Actin	994	Myosin Heads Walk along Actin Filaments	1015
The Actin Sequence Has Changed Little during Evolution	994	A Myosin Head Takes an 11-nm Step Each Time an ATP Molecule Is Hydrolyzed	1017
ATP Holds Together the Two Lobes of the Actin Monomer	994	X-Ray Crystallography Reveals the Atomic Structure of the Motor Domain	1018
G-Actin Assembles into Long F-Actin Polymers	995	Conformational Changes in the Head Couple ATP Hydrolysis to Movement	1020
F-Actin Is a Helical Polymer of Identical Subunits	995	<i>Muscle, A Specialized Contractile Machine</i>	1021
F-Actin Has Structural and Functional Polarity	996	Some Muscles Contract, Others Generate Tension	1022
<i>Actin Architectures</i>	996	Striated Muscles Contain a Regular Array of Actin and Myosin	1023
The Actin Cytoskeleton Is Organized into Bundles and Networks of Filaments	997	In Smooth Muscle, Thick and Thin Filaments Are Not in Regular Arrays	1025
Actin Bundles and Networks Are Connected to the Membrane	998	Thick and Thin Filaments Slide Past Each Other during Contraction	1025
Cortical Networks of Actin Filaments Stiffen Cell Membranes and Immobilize Integral Membrane Proteins	999	A Third Filament System of Long Proteins Organizes the Sarcomere	1026
Dystrophin Anchors a Cortical Actin Network Directly to the Extracellular Matrix	1000	Calcium from the Sarcoplasmic Reticulum Triggers Contraction	1026
Actin Bundles Support Projecting Fingers of Membrane	1002	Calcium Activation of Myosin Light Chains Regulates Contraction in Smooth Muscle and Invertebrate Muscle	1030
<i>The Dynamics of Actin Assembly</i>	1003	<i>Actin and Myosin in Nonmuscle Cells</i>	1032
Actin Polymerization in Vitro Proceeds in Three Steps	1003	Actin and Myosin II Are Arranged in Sarcomere-Like Structures	1032
ATP Enhances Assembly from One End of a Filament	1003	Contractile Actin Bundles Are Attached to Specialized Sites at the Plasma Membrane	1035
Fungal Toxins Disrupt the Monomer-Polymer Equilibrium	1006	Myosin II Stiffens Cortical Membranes	1036
Actin-Binding Proteins Control the Lengths of Actin Filaments	1006		

Actin and Myosin II Have Essential Roles in Cytokinesis	1036
Myosins I and V Move Membrane-Bounded Cargoes along Actin Filaments	1038
Membrane-Bound Myosin in Vesicle Movements	1039
Myosin I and Myosin II Are Not Essentially Required for Cell Migration	1039
Cell Motility	1040
Movements of Fibroblasts Involve Controlled Polymerization and Rearrangements of Actin Filaments	1041
Ameboid Movement Involves Reversible Gel-Sol Transitions of an Actin Network	1043
Cell Movements Are Coordinated by Various Second Messengers and Signal Transduction Pathways	1044
Summary	1046
Review Questions	1048
References	1049
23 MICROTUBULES AND INTERMEDIATE FILAMENTS	1051
Microtubule Structures	1052
Tubulin Subunits Comprise the Wall of a Microtubule	1052
Microtubules Form a Diverse Array of Both Permanent and Transient Structures	1054
Microtubules Grow from Microtubule-Organizing Centers	1055
The Microtubule-Organizing Center Determines the Polarity of Cellular Microtubules	1055
Multiple Tubulin Genes and Chemical Modification Leads to Tubulin Diversity	1059
Microtubule Dynamics	1061
Microtubule Assembly and Disassembly Occur by Preferential Addition and Loss of $\alpha\beta$ Dimers at the (+) End	1061
Dynamic Instability Is an Intrinsic Property of Microtubules	1064
Colchicine and Other Anti-Cancer Drugs Poison Microtubule Assembly or Disassembly	1066
Microtubule-Associated Proteins	1067
MAPs Organize Bundles of Microtubules	1067
MAPs Stabilize Microtubules	1070

Kinesin, Dynein, and Intracellular Transport	1070
Fast Axonal Transport Occurs along Microtubules	1070
Microtubules Provide Tracks for the Movement of Pigment Granules	1072
Intracellular Membrane Vesicles Travel Along Microtubules	1072
Microtubule Motor Proteins Promote Vesicle Translocation along Microtubules	1075
Kinesin Is a (+) End-Directed Motor Protein	1075
Dynein Is a (-) End-Directed Motor Protein	1078
Multiple Motor Proteins Are Associated with Membrane Vesicles	1078
Cilia and Flagella: Structure and Movement	1079
All Eukaryotic Cilia and Flagella Contain Bundles of Doublet Microtubules	1080
Ciliary and Flagellar Beating Is Produced by Controlled Sliding of Outer Doublet Microtubules	1084
Dynein Arms Generate the Sliding Forces	1084
Axonemal Dyneins Are Multi-Headed Motor Proteins	1086
Flagellar Beat Requires Conversion of Sliding to Bending	1086
Genetic Studies Provide Information about the Roles of the Central Microtubules and the Radial Spokes	1087
Calcium Regulates the Direction of Swimming	1087
Axonemes Assemble from Basal Bodies	1088
Basal Bodies Closely Resemble Centrioles	1089
Microtubule Dynamics and Motor Proteins during Mitosis	1090
The Mitotic Apparatus Is a Microtubule Machine for Separating Chromosomes	1091
The Kinetochore Is a Specialized Attachment Site at the Chromosome Centromere	1091
Yeast Centromeres Bind a Single Microtubule	1094
Centrosome Duplication and Migration During Interphase and Prophase Initiate the Assembly of the Mitotic Apparatus	1094

During Prophase, Kinesin-Related Proteins and Cytoplasmic Dynein Participate in the Movements of Kinetochores and Centrosomes	1097
Assembly of the Mitotic Apparatus Involves Dynamic Microtubules	1098
At Metaphase Forces at the Kinetochore Move Chromosomes to the Equator of the Spindle	1100
During Anaphase Chromosomes Separate and the Spindle Elongates	1100
Astral Microtubules Determine Where Cytokinesis Takes Place	1103
Plant Cells Build a New Cell Wall During Cell Division	1105
Intermediate Filaments	1106
Intermediate Filaments Are Classified into Five Types	1106
All Subunit Proteins of Intermediate Filaments Have a Similar Structure	1109
Intermediate Filaments Are Dynamic Polymers in the Cell	1111
Phosphorylation of the N-Terminal Domain Regulates Polymerization of Intermediate Filaments during Mitosis	1112
Intermediate Filament-Associated Proteins Cross-Link Intermediate Filaments to Membranes and Microtubules	1113
Summary	1116
Review Questions	1118
References	1119
24 MULTICELLULARITY: CELL-CELL AND CELL-MATRIX INTERACTIONS	1123
The Extracellular Matrix: Primary Components and Functions	1124
Collagen: A Class of Multifunctional Fibrous Proteins	1126
The Basic Structural Unit of Collagen Is a Triple Helix	1127
Most Exons in Fibrous Collagen Genes Encode Gly-X-Y Sequences	1128
Collagen Fibrils Form by Lateral Interactions of Triple Helices	1128
Denatured Collagen Polypeptides Cannot Renature to Form a Triple Helix	1131
Procollagen Chains Assemble into Triple Helices in the Rough ER and Are Modified in the Golgi Complex	1131

Collagen Is Assembled into Fibrils after Secretion	1133
Mutations in Collagen Reveal Aspects of Its Structure and Biosynthesis	1134
Collagens Form Diverse Structures	1134
Type IV Collagen Forms the Two-Dimensional Reticulum of the Basal Lamina	1135
Hyaluronan and Proteoglycans	1136
Hyaluronan Is an Immensely Long, Negatively Charged Polysaccharide That Forms Hydrated Gels	1136
Hyaluronan Inhibits Cell-Cell Adhesion and Facilitates Cell Migration	1137
Proteoglycans Comprise a Diverse Family of Cell-surface and Extracellular-matrix Macromolecules	1139
Proteoglycans Can Bind Many Growth Factors	1142
Multiadhesive Matrix Proteins and Their Cell-Surface Receptors	1143
Laminin and Nidogen Are Principal Structural Proteins of All Basal Laminae	1143
Integrins Are Cell-Surface Receptors That Mediate Adhesion to the Extracellular Matrix and Cell-Cell Interactions	1144
Fibronectins Bind Many Cells to Fibrous Collagens and Other Matrix Components	1146
Fibronectins Promote Cell Adhesion to the Substratum	1148
Fibronectins Promote Cell Migration	1149
Cell-Cell Adhesion: Adhesive Proteins	1150
Adhesive Proteins Mediate Cell-Cell Interactions	1150
E-Cadherin Is a Key Adhesive Protein Expressed by Epithelial Cells	1150
Cadherins Influence Morphogenesis and Differentiation	1152
N-CAMs Mediate Ca^{2+} -Independent Adhesion of Cells in Nervous Tissue and Muscle	1153
Movement of Leukocytes into Tissues Requires Sequential Interaction of Specific Adhesive Proteins	1153
Cell-Cell Adhesion: Cell Junctions	1155
Three Types of Desmosomes Impart Rigidity to Tissues	1156
Intermediate Filaments Stabilize Epithelia by Connecting Spot Desmosomes	1156

Hemidesmosomes Connect Epithelial Cells to the Basal Lamina	1157
Gap Junctions Allow Small Molecules to Pass between Adjacent Cells	1157
Connexin, a Transmembrane Protein, Forms Cylindrical Channels in Gap Junctions	1159
<i>Dorsoventral Patterning During Embryogenesis</i>	1159
Embryologic Development Is Directed by Induction	1160
Transforming Growth Factor β (TGF β) Has Numerous Inductive Effects in Invertebrates and Vertebrates	1161
TGF β Homolog Encoded by the <i>decapentaplegic</i> Gene Controls Dorsoventral Patterning in <i>Drosophila</i> Embryos	1162
Sequential Inductive Events Regulate Early <i>Xenopus</i> Development	1163
<i>Formation of Internal Organs and Organization of Tissues</i>	1167
The Basal Lamina Is Essential for Differentiation of Many Epithelial Cells	1167
Direct Cell-Cell Contact Regulates Kidney Induction	1168
Hedgehog Organizes Pattern in the Chick Limb and the <i>Drosophila</i> Wing	1169
<i>Developmental Regulation by Direct Cell-Cell Contact</i>	1172
Boss Is a Cell-Surface Inductive Ligand for the Sev Receptor	1172
Cell-Surface Notch and Delta Proteins Control Signaling between Many Different Types of Cells	1173
<i>Regulation of Neuronal Outgrowth</i>	1175
Individual Neurons Can Be Identified Reproducibly and Studied	1175
Growth Cones Guide the Migration and Elongation of Developing Axons	1176
Different Neurons Navigate along Different Outgrowth Pathways	1177
Different Extracellular-Matrix Components Are Permissive for Neuronal Outgrowth	1178
Three Genes Define Dorsoventral Outgrowth in <i>C. elegans</i>	1179
A Chemoattractant Related to Unc6 Is Produced in the Floor Plate of the Vertebrate Neural Tube	1180

Extracellular Signals Can Repel Growth Cones	1181
Different Growth Cones Navigate along Different Axons	1182
The Basal Lamina at the Neuromuscular Junction Directs Differentiation of Regenerating Nerve and Muscle	1185
<i>Structure and Function of the Plant Cell Wall</i>	1187
Cellulose Molecules Form Long, Rigid Microfibrils	1188
Other Polysaccharides Bind to Cellulose to Generate a Complex Wall Matrix	1188
Cell Walls Contain Lignin and an Extended Hydroxyproline-Rich Glycoprotein	1190
Plants Grow Primarily by Auxin-Induced Cell Enlargement	1190
The Orientation of Newly Made Cellulose Microfibrils Is Affected by the Microtubule Network	1192
Plasmodesmata Interconnect the Cytoplasm of Adjacent Cells in Higher Plants	1193
<i>Summary</i>	1194
<i>Review Questions</i>	1196
<i>References</i>	1197
25 REGULATION OF THE EUKARYOTIC CELL CYCLE	1201
<i>Phases of the Cell Cycle</i>	1202
<i>Experimental Systems in Cell-Cycle Research</i>	1203
<i>Control of Entry into and Exit from Mitosis</i>	1203
The Same Factor Promotes Oocyte Maturation and Mitosis in Somatic Cells	1203
Mitotic Cycling in Early Embryos Depends on Synthesis and Degradation of Cyclin B	1207
MPF-Catalyzed Phosphorylation of Nuclear Lamins and Other Proteins Induces Early Mitotic Events	1212
Protein Degradation and Dephosphorylation Trigger Late Mitotic Stages	1216
Biochemical Studies with <i>Xenopus</i> Egg Extracts Identified Central Role of MPF in Regulating Entry into Mitosis	1219
<i>Regulation of MPF Activity</i>	1219
MPF Catalytic Subunit Is Encoded by <i>cdc2⁺</i> Gene in <i>S. pombe</i>	1221

MPF Catalytic Subunit Contains Activating and Inhibitory Sites That Are Phosphorylated	1222
Structure of Human Cyclin-Dependent Kinase 2 Suggests How Phosphorylation Regulates MPF Activity	1224
Entry into Mitosis Is Controlled by Multiple Mechanisms That Regulate MPF Activity	1224
<i>Control of Entry into the S Phase</i>	1226
<i>S. cerevisiae</i> Cdc28 Is Functionally Equivalent to <i>S. pombe</i> Cdc2	1227
S Phase-Promoting Factor Consists of a Catalytic Subunit and G ₁ Cyclin	1228
Various Cdc28-Cyclin Heterodimers Regulate Progress through the Cell Cycle in <i>S. cerevisiae</i>	1230
Cdc28-G ₁ Cyclin Complexes May Activate Transcription Factors at START	1230
A Cdk-Cyclin Complex Regulates a DNA Initiation Factor in <i>Xenopus</i>	1231
<i>Cell-Cycle Control in Mammalian Cells</i>	1232
Mammalian Restriction Point Is Analogous to START in Yeast Cells	1232
Multiple Cdks and Cyclins Regulate Passage of Mammalian Cells through the Cell Cycle	1232
Growth Factor-Induced Expression of Two Classes of Genes Returns G ₀ Mammalian Cells to the Cell Cycle	1235
Activity of Transcription Factor E2F Is Required for Entry into S Phase	1236
<i>Role of Checkpoints in Cell-Cycle Regulation</i>	1237
Presence of Unreplicated DNA Prevents Entry into Mitosis	1238
Defects in Assembly of the Mitotic Spindle Prevent Exit from Mitosis	1239
DNA Damage Prevents Entry into S Phase and Mitosis	1239
<i>Summary</i>	1240
<i>Review Questions</i>	1242
<i>References</i>	1243
26 CANCER	1247
<i>Characteristics of Tumor Cells</i>	1248
Malignant Tumor Cells Are Invasive and Can Spread	1248

Alterations in Cell-to-Cell Interactions Are Associated with Malignancy	1249
Tumor Cells Lack Normal Controls on Cell Growth	1251
<i>Use of Cell Cultures in Cancer Research</i>	1251
Fibroblastic, Epithelial, and Nonadherent Cells Grow Readily in Culture	1251
Some Cell Cultures Give Rise to Immortal Cell Lines	1252
Certain Factors in Serum Are Required for Long-Term Growth of Cultured Cells	1253
Malignant Transformation Leads to Many Changes in Cultured Cells	1254
Transcription of Oncogenes Can Trigger Transformation	1258
<i>Oncogenes and Their Proteins: Classification and Characteristics</i>	1258
Oncogenes Were Initially Identified in Viruses and Tumor Cell DNA	1258
Five Types of Proteins Participate in Control of Cell Growth	1259
Oncoproteins Affect the Cell's Growth-Control Systems in Various Ways	1260
Apoptosis, or Induced Cell Suicide, Is One Mechanism of Protection Against Cancer	1267
Oncoproteins Act Cooperatively in Transformation and Tumor Induction	1267
Consistent Chromosomal Anomalies Associated with Tumors Point to the Presence of Oncogenes	1268
Inherited Human Propensities to Develop Cancer Point to Tumor-Suppressor Genes	1269
<i>DNA Viruses as Transforming Agents</i>	1270
DNA Viruses Can Transform Nonpermissive Cells by Random Integration of the Viral Genome into the Host-Cell Genome	1270
Transformation by DNA Viruses Requires Interaction of a Few Independently Acting Viral Proteins	1271
<i>RNA-Containing Retroviruses as Transforming Agents</i>	1273
Virion-Producing Infection Cycle of Retroviruses Requires Integration into the Host-Cell Genome	1273
Oncogenic Transducing Retroviruses Convert Cellular Proto-Oncogenes into Oncogenes	1275

Nononcogenic Transducing Retroviruses Have Been Constructed Experimentally	1277
Slow-Acting Carcinogenic Retroviruses Can Activate Nearby Cellular Proto-Oncogenes after Integration into the Host-Cell Genome	1278
<i>Human Tumor Viruses</i>	1279
<i>Chemical Carcinogens</i>	1280
Most Chemical Carcinogens Must Undergo Metabolic Conversion to Become Active	1280
The Carcinogenic Effect of Chemicals Depends on Their Interaction with DNA	1284
<i>The Role of Radiation and DNA Repair in Carcinogenesis</i>	1284
Ineffective or Error-Prone Repair of Damaged DNA Perpetuates Mutations	1285
Some Defects in DNA-Repair Systems Are Associated with High Cancer Rates in Humans	1285
<i>The Multicausal, Multistep Nature of Carcinogenesis</i>	1286
Epigenetic Alterations May Occur in Teratocarcinomas	1286
Some Cancer-Inducing Chemicals Act Synergistically	1286
Natural Cancers Result from the Interaction of Multiple Events over Time	1287
<i>Human Cancer</i>	1287
<i>Summary</i>	1288
<i>Review Questions</i>	1289
<i>References</i>	1291
27 IMMUNITY	1295
<i>Overview</i>	1296
Antibodies Bind to Epitopes and Have Two Functional Domains	1297
Antibody Reaction with Antigen Is Reversible	1299
Antibodies Come in Many Classes	1300
Antibodies Are Made by B Lymphocytes	1302
The Immune System Has Extraordinary Versatility	1302
Clonal Selection Theory Underlies All Modern Immunology	1303

The Immune System Has a Memory	1304
Other Parts of the Immune Response Are Carried Out by T Lymphocytes	1306
B Cells and T Cells Have Identifying Surface Markers	1306
Macrophages Play a Central Role in Stimulating Immune Responses	1307
Cells Responsible for the Immune Response Circulate throughout the Body	1308
Tolerance Is a Central Concept of Immunology	1309
Immunopathology Is Disease Caused by the Immune System	1309
<i>Antibodies, B Cells, and the Generation of Diversity</i>	1310
Heavy-Chain Structure Differentiates the Classes of Antibodies	1310
Antibodies Have a Domain Structure	1310
The N-Terminal Domains of H and L Chains Have Highly Variable Structures That Constitute the Antigen-Binding Site	1311
Several Mechanisms Generate Antibody Diversity	1315
DNA Rearrangement Generates Antibody Diversity	1315
A Single Recombination Event Generates Diversity in L Chains	1315
Imprecision of Joining Makes an Important Contribution to Diversity	1318
Lambda Diversity Derives from Multiple Constant Regions	1319
H-Chain Variable Regions Derive from Three Libraries	1319
Recognition Sequences for All Joining Reactions Are Virtually Indistinguishable	1320
The Synthesis of Immunoglobulins Is Like That of Other Extracellular Proteins	1321
<i>The Antigen-Independent Phase of B-Lymphocyte Maturation</i>	1321
B-Lymphocytes Go through an Orderly Process of Gene Rearrangement	1321
The Antigen-Independent Phase Can Generate Cells with 10^{11} Different Specificities	1322

The Immune System Requires Allelic Exclusion	1323
Antibody Gene Rearrangement and Expression Are Controlled by Transcription Factors	1323
<i>T Lymphocytes</i>	1324
There Are Two T-Cell Receptor Molecules	1325
T-Cell Receptors Recognize a Foreign Antigen in Combination with a Self-Molecule	1325
T Cells Are Educated in the Thymus to React with Foreign Proteins but Not Self-Proteins	1329
T Cells Respond to Antigen by Either Killing Cells or Secreting Protein Factors	1330
<i>The Antigen-Dependent Phase of the Immune Response</i>	1332
B-Cell Activation Involves B Cell-T _H Cell Collaboration	1333
Activation Is the Result of Cellular Stimulation	1335

Antibody Secretion by Activated B Cells Entails Many Cellular Changes	1335
The Activation Process Produces Both Plasma Cells and Memory Cells	1335
The Change from Surface Antibody to Secreted Antibody Requires the Synthesis of an Altered H Chain	1335
Antibody Class Switching Also Requires an Altered H Chain	1337
Memory Cells Participate in the Secondary Immune Response	1338
Somatic Mutation of Variable Regions Follows from Activation	1338
Tolerance Is Achieved Partly by Making B Cells Unresponsive	1339
<i>Summary</i>	1340
<i>Review Questions</i>	1341
<i>References</i>	1342
<i>Glossary</i>	G-1
<i>Index</i>	I-1