

CONTENTS

Dedication	V
Preface	VII
LIPID METABOLISM IN CHLOROPLASTS AND LEAVES	
Oleic acid, the central substrate P.K. Stumpf, D.N. Kuhn, D.J. Murphy, M.R. Pollard, T. McKeon and J. MacCarthy	3
The role of chloroplasts in leaf lipid metabolism and poly- unsaturated fatty acid synthesis G. Roughan and R. Slack	11
Use of mesophyll protoplasts to study lipid metabolism in cell organelles R. Haas and E. Heinz	19
The structural organization of chloroplast lipids <i>in vivo</i> and in model systems: Some aspects C. Liljenberg	29
Lysogalactolipids as intermediates in galactolipid synthesis in chloroplasts K.-P. Heise and A. Sauer	39
Galactolipid formation in chloroplast envelopes. A discussion on differences between experiments <i>in vivo</i> and <i>in vitro</i> J.F.G.M. Wintermans, A. van Besouw, G. Bögemann and J. Aerts	49
Studies on the biosynthesis of sulfoquinovosyl diacylglycerol in higher plants J.B. Mudd, R. Dezacks and J. Smith	57
Long chain acyl-coenzyme A thioesters as substrates in glycerolipid biosynthesis of chloroplasts M. Bertrams and E. Heinz	67
Synthesis of long-chain acyl-CoA in chloroplast envelope membranes J. Joyard and P.K. Stumpf	73
Cooperation between chloroplasts and the extra-plastidial compartment for the biosynthesis of leaf lipids A. Trémolières, J.-P. Dubacq, D. Drapier and P. Mazliak	77
Phospholipid exchange proteins from photosynthetic tissues M. Julienne, D. Douady, J.-P. Dubacq, A. Trémolières, D. Drapier, M. Grosbois, P. Mazliak and J.-C. Kader	81
Changes in lipid composition and synthesis and in chloroplast structure observed in greening barley leaves A.O. Davies, A.T. James, R. Jeffcoat and J.L. Harwood	85

A hypothetic role for phosphatidylglycerol and 3- <i>trans</i> -hexadecenoic acid in the light reactions of the photosynthetic process J.-C. Duval, J.-P. Dubacq and A. Trémolières	91
Trans-3-hexadecenoic acid and grana stacking T. Guillot-Salomon, A. Trémolières, C. Tuquet and J.-P. Dubacq	95
Lipid changes in plastids isolated from alfalfa seedlings grown under salt-stress F. Harzallah-Skhiri, T. Guillot-Salomon and M. Signol	99
Influence of growth temperature on acyl lipids of leaves D.J. Chapman and J. Barber	103
Fatty acid synthesis in isolated chromoplasts and chromoplast homogenates. ACP stimulation, substrate utilisation, and cerulenin inhibition B. Liedvogel and H. Kleinig	107
Partial purification and properties of a soluble fatty acid synthetase from olive leaves L.M. Daza, M. Garrido and J.P. Donaire	111
Function and distribution of phospholipids in spinach thylakoid membranes as revealed by phospholipase A ₂ treatment A. Rawyler and P.-A. Siegenthaler	117
Characterization and meaning of chloroplast lipoxygenase activities R. Douillard	121
Galactolipid biosynthesis in <i>Euglena gracilis</i> E. Blee and R. Schantz	127
Phosphatidylglycerol biosynthesis in <i>Euglena gracilis</i> A. Chammai and R. Schantz	131
Discovery of a new glyceroglycolipid in blue-green algae and its role in galactolipid biosynthesis G.B. Feige, E. Heinz, K. Wrage, N. Cochems and E. Ponzelar	135
LIPID METABOLISM IN NON-PHOTOSYNTHETIC TISSUES	
Fatty acid synthesis J.L. Harwood	143
Phospholipid localization in biological membranes J.A.F. Op den Kamp, T. Kauerz and G. van Meer	153
Phospholipid exchange protein from higher plants M. Yamada, T. Tanaka and J.-I. Ohnishi	161
Lipid metabolism as a factor in environmental adaptation P.J.C. Kuiper	169
Biogenesis of lipids in oilseed plants L.-Å. Appelqvist	177

The biochemistry of lipids in cereal crops T. Galliard and P.J. Barnes	191
Lipid composition of sycamore cells cultivated at various temperatures M. Gawer, F. Trapé, J. Guern and P. Mazliak	199
Oxygen and temperature effects on the fatty acid composition of sycamore cells (<i>Acer pseudoplatanus L.</i>) F. Rebeille, R. Bligny and R. Douce	203
Desaturation of fatty acids in lipids in response to the growth temperature in the blue-green alga, <i>Anabaena variabilis</i> N. Sato and N. Murata	207
Subcellular localisation of fatty acid synthetases in cell cultures of higher plants F. Spener	211
Biosynthesis of parinaric acid (9,11,13,15-octadecatetraenoic acid) M. Noda, K. Ohga, Y. Nakagawa and K. Ichihara	215
A comparison of the polypeptide and phospholipid composition of oil body and microsomal preparations from safflower and linseed cotyledons R. Slack and G. Roughan	219
Lipid metabolism in developing wheat seeds D.N. Stokes, T. Galliard and J.L. Harwood	223
α -ketodicarboxylic acids in lipogenic substrates in Flacourtiaceae I. Tober and F. Spener	227
Root phospholipid composition as a factor of the differential Ca-sensitivity of plants M. Rossignol and C. Grignon	231
Calcium binding, phosphatidic acid formation and fatty acid breakdown in plant mitochondria J. Dupont and C. Lance	235
The availability of palmitoyl-CoA influences the activity of palmitoyl-CoA hydrolase in carrot homogenate P. Baardseth and E. Slinde	239
Effect of sodium chloride and calcium sulfate on the lipid composition of sunflower leaves (<i>Helianthus annuus L.</i>) L. Bettaielb, M. Gharsalli and A. Cherif	243
Relationships between temperature, microviscosity and desaturases activities in the microsomal membranes of two fungi with different behaviour L. Chavant, C. Montant and C. Wolf	249
<i>Scopulariopsis brevicaulis</i> (Bainier) : Study of the lipid content in relation to growth J.-L. Fonvieille and M. Sancholle	253
Fatty acid biosynthesis in cell free preparations of <i>Anabaena cylindrica</i> Z.T. Al'Araji and T.J. Walton	259

The effect of biotrophic fungal infection on the lipid metabolism of green plants D.M. Lösel	263
WAX METABOLISM	
Light promotes synthesis of the very long fatty acid acyl chains in maize wax P. von Wettstein-Knowles, P. Avato and J. D. Mikkelsen	271
Alkanes and alkenes in the epicuticular waxes from <i>Cistus</i> plants P.-G. Gülz	275
Stearoyl-CoA metabolism in the microsomes from leek epidermal cells: Thioesterase, acyltransferase and elongase activities T. Abdul-Karim, R. Lessire and C. Cassagne	281
Synthesis of lipids by epidermal and mesophyll protoplasts isolated from barley leaf sheaths J.D. Mikkelsen	285
Long chain fatty acid activation: Relations with very long chain fatty acids biosynthesis R. Lessire and C. Cassagne	291
PIGMENTS	
Prenyquinones in plant leaves H.K. Lichtenthaler	299
Current concept of organization of chlorophyll biosynthesis A.A. Shlyk	311
Carotenoid biosynthesis in plants J.W. Porter, S.L. Spurgeon and D. Pan	321
The role of carotenoids in chloroplasts of higher plants D. Siefermann-Harms	331
Biosynthesis of α -tocopherol and plastoquinone-9 in spinach chloroplasts J. Soll and G. Schultz	341
Carotenoid biosynthesis in <i>Scenedesmus obliquus</i> (Chlorophyta): Experiments with deuterium oxide G. Britton and A.P. Mundy	345
The influence of kinetin on the chlorophyll biosynthesis in radish cotyledons C. Buschmann	349
Properties of membrane-bound 3-hydroxy-3-methylglutaryl-coenzyme A reductase (EC 1.1.1.34) from radish seedlings and some aspects of its regulation T.J. Bach, H.K. Lichtenthaler and J. Rétey	355

Carotenoid biosynthesis: Biogenesis of capsanthin and capsorubin in pepper fruits (<i>Capsicum annuum</i>) B. Camara and R. Monéger	363
Level of chlorophyll b and the light harvesting chlorophyll-protein complex in <i>Raphanus</i> seedlings grown at different light quanta fluence rates U. Prenzel, H.K. Lichtenthaler and D. Meier	369
Circular dichroism studies of the spontaneous organization of xanthophyll compounds in water-alcohol solutions. Correlations with the role played by the polyene substances in the structural organization of biological systems J. Lematre, B. Maudinas and C. Ernst	373
Light influence on zeaxanthin epoxidation inhibition of S-ethyl dipropylthiocarbamate R.E. Wilkinson	375
Lipids, pigments, light-harvesting chlorophyll protein complex and structure of a virescent mutant of maize E. Selstam	379
STEROLS AND TERPENES	
Function as an evolutionary determinant of biosynthesis W.R. Nes	387
The use of mutants and azasterols in studies of yeast sterol biosynthesis A.C. Oehlschlager, H.D. Pierce, Jr., A.M. Pierce, R.H. Angus, E. Quantin-Martenot, A.M. Unrau and R. Srinivasan	395
Biosynthesis of sterol conjugates in plants Z.A. Wojciechowski	405
A monolayer study of lipid: Protein interactions in the chloroplast membrane D.G. Bishop and J.R. Kenrick	415
Incorporation of ^{14}C -labeled CO_2 , phosphoglycerate, phosphoenol-pyruvate, pyruvate, acetate and mevalonate into terpenoids and acyllipids of isolated intact spinach chloroplasts K.H. Grumbach	421
Site of synthesis of geranylgeraniol derivatives in intact spinach chloroplasts M.A. Block, J. Joyard and R. Douce	427
Latency of uridine diphosphate glucose-sterol- β -D-glucoyl-transferase and uridine diphosphatase in purified membrane fractions from maize coleoptiles M. M'Voula-Tsiéri, P. Benveniste, E. Martenot and M.-A. Hartmann-Bouillon	431

Biosynthesis and cellular localisation of terpene hydrocarbons in maritime pine C. Bernard-Dagan, M. Gleizes, G. Pauly, J.P. Carde and A. Marpeau	437
Membrane systems involved in synthesis and transport of monoterpene hydrocarbons in pine leaves J.-P. Carde, C. Bernard-Dagan and M. Gleizes	441
Presence of steryl glycosides and amyrin glycosides in a blue-green alga: <i>Nostoc commune</i> and a red alga: <i>Porphyridium</i> sp. R. Duperon, P. Doireau, A. Verger and P. Duperon	445
Author index	449