

CONTENTS

PREFACE, xiii

1 INTRODUCTION, 1

- 1.1 Experimental Considerations Unique to Plants, 2
- 1.2 The Magnitude of Plant Processes, 4
- 1.3 The Evolution of Plant Constituents, 6

2 HEXOSE BREAKDOWN, 12

- 2.1 Reversibility of Glycolysis, 12
- 2.2 Regulation of Glycolysis, 14
- 2.3 Aldolase, 15
- 2.4 Glyceraldehyde Phosphate Dehydrogenase, 16
- 2.5 The Phosphogluconate Oxidative Pathway, 19

2.6	The Citric Acid Cycle, 19
2.7	Carboxylations and Decarboxylations, 25
2.8	The Glyoxylate Cycle, 28
	General References, 29
3	ELECTRON TRANSPORT: THE REDUCTION OF OXYGEN, SULFATE, AND NITRATE, 30
3.1	Flavoproteins, CoQ, Cytochromes, 30
3.2	Special Problems in Plant Respiration, 35
3.3	Genesis and Partial Autonomy of Mitochondria, 37
3.4	Sulfate Reduction, 38
3.5	Nitrate Reduction, 41
	General References, 43
4	PHOTOSYNTHETIC CARBON METABOLISM, 44
4.1	The Calvin Cycle, 44
4.2	Rates and Control Processes, 46
4.3	Ribulose Diphosphate Carboxylase, 48
4.4	Photorespiration, 50
4.5	The C ₄ Pathway of CO ₂ Fixation, 53
4.6	The Reductive Carboxylation Cycle, 56
	General References, 56
5	HEXOSE ASSIMILATION AND THE CELL WALL, 57
5.1	Reactions of Hexoses, 57
5.2	Sucrose Synthesis, 61
5.3	Galactinol as a Galactose Donor, 63
5.4	Starch Synthesis, 64
5.5	Starch Breakdown, 67
5.6	Cell Wall Polysaccharides, 68
5.7	Lignin, 72
5.8	Cell Wall Protein, 77
5.9	The Plasma Membrane, 79
	General References, 80

6	LIPIDS AND LIPID PIGMENTS, 81
6.1	Biosynthesis of Lipids, 81
6.2	Cutin and Wax, 86
6.3	Lipid Degradation, 88
6.4	Isopentene Units and Terpenes, 93
6.5	Carotene Biosynthesis, 93
6.6	Other Terpenoids, 96
6.7	Chlorophyll Synthesis, 97
	General References, 109
7	PHOTOSYNTHESIS: PHYSICS, PHOTOSYSTEM 1, 110
7.1	Quantum Efficiency, 111
7.2	Action Spectra, Enhancement, Photosynthetic Units, 113
7.3	The Reduction of CO ₂ via NADP, 118
7.4	Flavoprotein and Ferredoxin, 120
7.5	A Primary Reductant of Photosystem I, 128
7.6	Light Absorption for Photosystem I, 130
7.7	P700, The Primary Oxidant of Photosystem I, 132
	General References, 138
8	PHOTOSYNTHESIS: ELECTRON TRANSPORT LINKING THE PHOTO ACTS, PHOTOSYSTEM II, 139
8.1	Plastocyanin, 140
8.2	Cytochrome "f", 142
8.3	b-Type Cytochromes, 146
8.4	Plastoquinone, 148
8.5	Photosystem II, 150
8.6	Photosystem II Fluorescence, 151
8.7	Manganese and the Splitting of Water, 154

9	PHOTOSYNTHESIS: PHOTOPHOSPHORYLATION, INHIBITORS, PARTIAL REACTIONS, STRUCTURAL UNITS, 156
	9.1 Stoichiometric Phosphorylation, 156 9.2 Cyclic Phosphorylation, 158 9.3 Phosphorylation Mechanisms, 160 9.4 Inhibitors and Partial Reactions of Photosynthesis, 164 9.5 Subunits of Chloroplast Structure and Function, 167
10	CHLOROPLAST DEVELOPMENT, 170
	10.1 Photoconversion of Proplastids, 170 10.2 Enzyme Changes Associated with Greening, 171 10.3 Photocontrol of Chloroplast Development, 174 10.4 Metabolic Control and Membrane Assembly, 175 10.5 Chloroplast Autonomy, 177 10.6 Chloroplast DNA, 177 10.7 Chloroplast Ribosomes, 180 General References, 183
11	PHOTOCHEMICAL AND HORMONAL CONTROLS, 184
	11.1 Phytochrome, 185 11.2 Time and the Photoresponse, 186 11.3 Molecular Changes Related to Phytochrome, 187 11.4 Indoleacetic Acid, 191 11.5 Abscisic Acid, 192 11.6 Gibberellic Acid, 193 11.7 Cytokinins, 195 11.8 Ethylene, 196 General References, 198
	GLOSSARY, 201
	REFERENCES, 207
	INDEX, 229