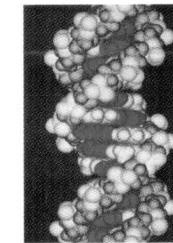


No. DE INVENTARIO 5801

FECHA DE INGRESO 13-03-2002

No. DE FACTURA 12724 [7]

PROVEEDOR Sigma-Aldrich Química


Sol: Dr. Hugh Harries.

No. Sol.: RN0021.

Outline

Part 1 Genes	1	16 Retroviruses and retroposons	485
1 Genes are DNA	3	17 Rearrangement of DNA	507
2 From genes to genomes	37		
3 How many genes are there?	67		
4 Clusters and repeats	89		
Part 2 Proteins	117	Part 5 The nucleus	543
5 Messenger DNA	119	18 Chromosomes	545
6 Protein synthesis	139	19 Nucleosomes	567
7 Using the genetic code	167	20 Initiation of transcription	617
8 Protein localization	191	21 Regulation of transcription	649
		22 Nuclear splicing	685
		23 Catalytic RNA	719
		24 Immune diversity	741
Part 3 mRNA	231	Part 6 Cells	773
9 Transcription	232	25 Protein trafficking	775
10 The operon	273	26 Signal transduction	801
11 Phage strategies	319	27 Cell cycle and growth regulation	835
		28 Oncogenes and cancer	875
		29 Gradients, cascades, and signaling pathways	913
Part 4 DNA	347		
12 The replicon	349		
13 DNA replication	385		
14 Recombination and repair	415		
15 Transposons	457		
Glossary			953
Index			973

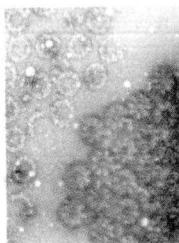
Contents

Part 1 Genes

1	Genes are DNA	3
4	DNA is the genetic material	
6	DNA is a double helix	
9	DNA replication is semiconservative	
12	Nucleic acids hybridize by base pairing	
14	Mutations change the sequence of DNA	
17	Mutations are concentrated at hotspots	
19	A cistron is a single stretch of DNA	
21	The nature of multiple alleles	
23	Recombination occurs by physical exchange of DNA	
25	The genetic code is triplet	
27	Bacterial genes and proteins are colinear	
30	<i>cis</i> -acting sites and <i>trans</i> -acting molecules	
31	Genetic information can be provided by DNA or RNA	

2 From genes to genomes

37	From genes to genomes	37
38	Genes can be mapped by restriction cleavage	
41	How variable are individual genomes?	
44	Eukaryotic genes are often interrupted	
46	Organization of interrupted genes may be conserved	
48	Exon sequences are conserved but introns vary	
49	Genes can be isolated by the conservation of exons	
53	Genes show a wide distribution of sizes	
55	Some DNA sequences code for more than one protein	
58	How did interrupted genes evolve?	
63	The scope of the paradigm	


3 How many genes are there?

67	How many genes are there?	67
68	Why are genomes so large?	
69	Eukaryotic genomes have several sequence components	
73	Most structural genes lie in nonrepetitive DNA	

Total gene number is known for several organisms	75
How many genes are essential?	76
How many genes are expressed?	78
Organelles have DNA	80
Organelle genomes are circular DNAs that code for organelle proteins	82
Mitochondrial DNA codes for few proteins	83
The chloroplast genome codes for ~100 proteins and RNAs	84

4 Clusters and repeats

Gene clusters are formed by duplication and divergence	90
Sequence divergence is the basis for the evolutionary clock	92
Pseudogenes are dead ends of evolution	95
Unequal crossing-over rearranges gene clusters	97
Genes for rRNA form a repeated tandem unit	100
Crossover fixation could maintain identical repeats	103
Satellite DNAs often lie in heterochromatin	106
Arthropod satellites have very short identical repeats	108
Mammalian satellites consist of hierarchical repeats	108
Minisatellites are useful for genetic mapping	113

Part 2 Proteins

117

5 Messenger RNA

Transfer RNA is the adapter	120
Messenger RNA is translated by ribosomes	124
The life cycle of messenger RNA	126
Translation of eukaryotic mRNA	129
The 5' end of eukaryotic mRNA is capped	130
The 3' terminus is polyadenylated	131
Degradation pathways for mRNA	133

6 Protein synthesis

The stages of protein synthesis	140
Initiation in bacteria needs 30S subunits and accessory factors	143
A special initiator tRNA starts the polypeptide chain	144
Initiation involves base pairing between mRNA and rRNA	147
Small subunits scan for initiation sites on eukaryotic mRNA	149
Elongation factor T loads aminoacyl-tRNA into the A site	152
Translocation moves the ribosome	154
Three codons terminate protein synthesis	157
Ribosomes have several active centers	159

Nancy April

Carlos

Edu Caja

The role of ribosomal RNA in protein synthesis	162
--	-----

7 Using the genetic code

Codon-anticodon recognition involves wobbling	169
tRNA contains modified bases that influence its pairing properties	170
The genetic code is altered in mitochondria	174
tRNAs are charged with amino acids by individual synthetases	176
Accuracy depends on proofreading	179
Suppressor tRNAs have mutated anticodons that read new codons	182
The accuracy of translation	185
tRNA may influence the reading frame	187

8 Protein localization

Chaperones may be required for protein folding	194
Post-translational membrane insertion depends on leader sequences	198
A hierarchy of sequences determines location within organelles	201
The translocation apparatus interacts with signal sequences	203
How do proteins enter and leave membranes?	208
Anchor signals are needed for membrane residence	212
Bacteria use both co-translational and post-translational translocation	215
Pores control nuclear ingress and egress	216
Protein degradation by proteasomes	224

Part 3 mRNA

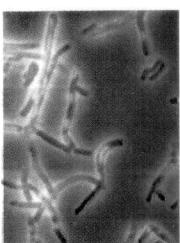
231

9 Transcription

Transcription is catalyzed by RNA polymerase	234
RNA polymerase consists of multiple subunits	238
Sigma factor controls binding to DNA	240
Promoter recognition depends on consensus sequences	244
RNA polymerase binds to one face of DNA	247
Substitution of sigma factors may control initiation	250
Sigma factors may be organized into cascades	253
Bacterial RNA polymerase has two modes of termination	257
How does rho factor work?	259
Antitermination depends on specific sites	262
More subunits for RNA polymerase	267

10 The operon

995-1002


Structural gene clusters are coordinately controlled	275
Repressor is controlled by a small molecule inducer	277

Mutations identify the operator and the regulator gene	280
Repressor protein binds to the operator and is released by inducer	283
The specificity of protein-DNA interactions	288
Repression can occur at multiple loci	291
Distinguishing positive and negative control	292
Catabolite repression involves positive regulation at the promoter	294
Adverse growth conditions provoke the stringent response	298
Autogenous control may occur at translation	301
Alternative secondary structures control attenuation	306
Small RNA molecules can regulate translation	312

11 Phage strategies

319

Lytic development is controlled by a cascade	321
Functional clustering in phages T7 and T4	324
The lambda lytic cascade relies on antitermination	325
Lysogeny is maintained by an autogenous circuit	330
The DNA-binding form of repressor is a dimer	333
Repressor binds cooperatively at each operator using a helix-turn-helix motif	334
How is repressor synthesis established?	339
A second repressor is needed for lytic infection	342
A delicate balance: lysogeny versus lysis	344

Part 4 DNA

347

12 The replicon

349

Origins can be mapped by autoradiography and electrophoresis	350
The bacterial genome is a single circular replicon	354
Each eukaryotic chromosome contains many replicons	355
Isolating the origins of yeast replicons	357
D loops maintain mitochondrial origins	358
The problem of linear replicons	361
Rolling circles produce multimers of a replicon	363
Single-stranded genomes are generated for bacterial conjugation	366
Connecting bacterial replication to the cell cycle	370
Cell division and chromosome segregation	371
Multiple systems ensure plasmid survival in bacterial populations	376
Plasmid incompatibility is connected with copy number	378

13 DNA replication

385

DNA polymerases: the enzymes that make DNA	386
DNA synthesis is semidiscontinuous and primed by RNA	390

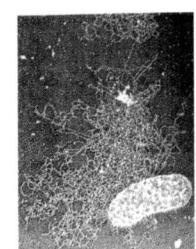
Coordinating synthesis of the lagging and leading strands	393
The replication apparatus of phage T4	401
Creating the replication forks at an origin	402
Common events in priming replication at the origin	405
Does methylation at the origin regulate initiation?	406
Licensing factor controls eukaryotic rereplication	408

14 Recombination and repair

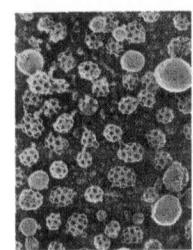
415

Breakage and reunion involves heteroduplex DNA	418
Double-strand breaks initiate recombination	420
Double-strand breaks initiate synapsis	422
Bacterial recombination involves single-strand assimilation	426
Gene conversion accounts for interallelic recombination	431
Topological manipulation of DNA	432
Specialized recombination involves breakage and reunion at specific sites	437
Repair systems correct damage to DNA	441
Excision repair systems in <i>E. coli</i>	444
Controlling the direction of mismatch repair	446
Retrieval systems in <i>E. coli</i>	449
RecA triggers the SOS system	450
Eukaryotic repair systems	452

15 Transposons


457

Insertion sequences are simple transposition modules	458
Composite transposons have IS modules	460
Transposition occurs by both replicative and nonreplicative mechanisms	462
Common intermediates for transposition	465
Replicative transposition proceeds through a cointegrate	467
Nonreplicative transposition proceeds by breakage and reunion	469
TnA transposition requires transposase and resolvase	470
Transposition of Tn10 has multiple controls	472
Controlling elements in maize cause breakage and rearrangements	473
Controlling elements in maize form families of transposons	476
<i>Spm</i> elements influence gene expression	478
The role of transposable elements in hybrid dysgenesis	479


16 Retroviruses and retroposons

485

The retrovirus life cycle involves transposition-like events	486
Retroviruses may transduce cellular sequences	494
Yeast Ty elements resemble retroviruses	496
Many transposable elements reside in <i>D. melanogaster</i>	499
Retroposons fall into two classes	500

17 Rearrangement of DNA	507	20 Initiation of transcription	617
The mating pathway is triggered by signal transduction	508	Eukaryotic RNA polymerases consist of many subunits	619
Yeast can switch silent and active loci for mating type	511	Promoter elements are defined by mutations and footprinting	620
Silent cassettes at <i>HML</i> and <i>HMR</i> are repressed	515	RNA polymerase I has a bipartite promoter	622
Unidirectional transposition is initiated by the recipient <i>MAT</i> locus	516	RNA polymerase III uses both downstream and upstream promoters	624
Regulation of <i>HO</i> expression	518	The basal apparatus consists of RNA polymerase II and general factors	627
Trypanosomes rearrange DNA to express new surface antigens	519	A connection between transcription and repair	632
Interaction of Ti plasmid DNA with the plant genome	524	Promoters for RNA polymerase II have short sequence elements	634
Selection of amplified genomic sequences	530	Enhancers contain bidirectional elements that assist initiation	637
Exogenous sequences can be introduced into cells and animals by transfection	533	Independent domains bind DNA and activate transcription	641
		Interaction of upstream factors with the basal apparatus	644
Part 5 The Nucleus	543		
18 Chromosomes	545	21 Regulation of transcription	649
Condensing viral genomes into their coats	546	Response elements identify genes under common regulation	650
The bacterial genome is a nucleoid with many supercoiled loops	549	There are many types of DNA-binding domains	652
Loops, domains, and scaffolds in eukaryotic DNA	551	A zinc finger motif is a DNA-binding domain	654
The contrast between interphase chromatin and mitotic chromosomes	553	Steroid receptors have several independent domains	656
The extended state of lampbrush chromosomes	556	Homeodomains bind related targets in DNA	660
Transcription disrupts the structure of polytene chromosomes	557	Helix-loop-helix proteins interact by combinatorial association	662
The eukaryotic chromosome as a segregation device	559	Leucine zippers are involved in dimer formation	664
Telomeres seal the ends of chromosomes	562	Chromatin remodeling is an active process	666
		Histone acetylation and deacetylation control chromatin activity	669
		Polycomb and trithorax are antagonistic repressors and activators	672
		Long range regulation and insulation of domains	674
		Gene expression is associated with demethylation	678
19 Nucleosomes	567		
The nucleosome is the subunit of all chromatin	568	22 Nuclear splicing	685
DNA is coiled in arrays of nucleosomes	571	Nuclear splice junctions are interchangeable but are read in pairs	687
DNA structure varies on the nucleosomal surface	574	Nuclear splicing proceeds through a lariat	690
Supercoiling and the periodicity of DNA	576	The spliceosome contains snRNAs	692
The path of nucleosomes in the chromatin fiber	578	Group II introns autosplice via lariat formation	699
Organization of the histone octamer	580	Alternative splicing involves differential use of splice junctions	702
Reproduction of chromatin requires assembly of nucleosomes	583	<i>cis</i> -splicing and <i>trans</i> -splicing reactions	705
Do nucleosomes lie at specific positions?	586	Yeast tRNA splicing involves cutting and rejoicing	707
Are transcribed genes organized in nucleosomes?	589	3' ends are generated by termination and by cleavage reactions	711
DNAase hypersensitive sites change chromatin structure	593		
Domains define regions that contain active genes	595		
Heterochromatin depends on interactions with histones	597	23 Catalytic RNA	719
Global changes in X chromosomes	601	Group I introns undertake self-splicing by transesterification	720
Methylation is responsible for imprinting	603	Group I introns form a characteristic secondary structure	723
Modes of epigenetic inheritance	606	Ribozymes have various catalytic activities	725
		Some introns code for proteins that sponsor mobility	728
		RNA can have ribonuclease activities	731

RNA editing utilizes information from several sources	733
24 Immune diversity 741	
Clonal selection amplifies lymphocytes that respond to individual antigens	743
Immunoglobulin genes are assembled from their parts in lymphocytes	745
The diversity of germline information	750
Recombination between V and C gene segments generates deletions and rearrangements	752
Allelic exclusion is triggered by productive rearrangement	757
DNA recombination causes class switching	758
Early heavy chain expression can be changed by RNA processing	760
Somatic mutation generates additional diversity	761
B cell development and memory	762
T-cell receptors are related to immunoglobulins	764
The major histocompatibility locus codes for many genes of the immune system	768
Part 6 Cells 773	
25 Protein trafficking 775	
Oligosaccharides are added to proteins in the ER and Golgi	778
Coated vesicles transport both exported and imported proteins	781
Budding and fusion reactions	786
Protein localization depends on further signals	791
Receptors recycle via endocytosis	794
26 Signal transduction 801	
Carriers and channels form water-soluble paths through the membrane	804
G proteins may activate or inhibit target proteins	809
Protein tyrosine kinases induce phosphorylation cascades	811
The Ras/MAPK pathway	816
Activating MAP kinase pathways	822
Cyclic AMP and activation of CREB	827
The JAK-STAT pathway	828
TGF β signals through Smads	830
27 Cell cycle and growth regulation 835	
Cycle progression depends on discrete control points	836
M phase kinase regulates entry into mitosis	840
Protein phosphorylation and dephosphorylation control the cell cycle	843
Cdc2 is the key regulator in yeasts	844
<i>CDC28</i> acts at both START and mitosis in <i>S. cerevisiae</i>	852
The animal cell cycle is controlled by many cdk-cyclin complexes	855

G0/G1 and G1/S transitions involve cdk inhibitors	858
Protein degradation is important in mitosis	861
Reorganization of the cell at mitosis	864
Apoptosis	866

28 Oncogenes and cancer 875	
Transforming viruses carry oncogenes	878
Retroviral oncogenes have cellular counterparts	881
Ras proto-oncogenes can be activated by mutation	883
Insertion, translocation, or amplification may activate proto-oncogenes	886
Oncogenes code for components of signal transduction cascades	890
Growth factor receptor kinases and cytoplasmic tyrosine kinases	892
Oncoproteins may regulate gene expression	896
RB is a tumor suppressor that controls the cell cycle	899
Tumor suppressor p53 suppresses growth or triggers apoptosis	901
Immortalization and transformation	906

29 Gradients, cascades, and signaling pathways 913	
Fly development uses a cascade of transcription factors	914
A gradient must be converted into discrete compartments	915
Maternal gene products establish gradients in early embryogenesis	917
Anterior-posterior development uses localized gene regulators	920
Dorsal-ventral development uses localized receptor-ligand interactions	923
TGF β /BMPs are diffusible morphogens	929
Cell fate is determined by compartments that form by the blastoderm stage	931
The wingless/wnt signaling pathway	938
Complex loci are extremely large and involved in regulation	940
The homeobox is a common coding motif in homeotic genes	946

Glossary 953	
--	--

Index 973	
---	--