

Contents

Numerical Examples xiii

1 Molecular Basis of Evolution 3

- 1.1. Evolutionary Tree of Life 3
- 1.2. Mechanism of Evolution 4
- 1.3. Structure and Function of Genes 5
- 1.4. Mutational Changes of DNA Sequences 9
- 1.5. Codon Usage 11

2 Evolutionary Change of Amino Acid Sequences 17

- 2.1. Amino Acid Differences and Proportion of Different Amino Acids 17
- 2.2. Poisson Correction (PC) and Gamma Distances 19
- 2.3. Bootstrap Variances and Covariances 25
- 2.4. Amino Acid Substitution Matrix 27
- 2.5. Mutation Rate and Substitution Rate 29

3 Evolutionary Change of DNA Sequences 33

- 3.1. Nucleotide Differences Between Sequences 33
- 3.2. Estimation of the Number of Nucleotide Substitutions 35
- 3.3. Gamma Distances 43
- 3.4. Numerical Estimation of Evolutionary Distances 45
- 3.5. Alignment of Nucleotide Sequences 46
- 3.6. Handling of Sequence Gaps in the Estimation of Evolutionary Distances 49

4 Synonymous and Nonsynonymous Nucleotide Substitutions 51

- 4.1. Evolutionary Pathway Methods 52
- 4.2. Methods Based on Kimura's 2-Parameter Model 62
- 4.3. Nucleotide Substitutions at Different Codon Positions 67
- 4.4. Likelihood Methods with Codon Substitution Models 69

5 Phylogenetic Trees 73

- 5.1. Types of Phylogenetic Trees 73
- 5.2. Topological Differences 81
- 5.3. Tree-Building Methods 83

6 Phylogenetic Inference: Distance Methods 87

- 6.1. UPGMA 87
- 6.2. Least Squares (LS) Methods 92
- 6.3. Minimum Evolution (ME) Method 99
- 6.4. Neighbor Joining (NJ) Method 103
- 6.5. Distance Measures to Be Used for Phylogenetic Reconstruction 111

7 Phylogenetic Inference: Maximum Parsimony Methods 115

- 7.1. Finding Maximum Parsimony (MP) Trees 116
- 7.2. Strategies of Searching for MP Trees 122
- 7.3. Consensus Trees 130
- 7.4. Estimation of Branch Lengths 131
- 7.5. Weighted Parsimony 133
- 7.6. MP Methods for Protein Data 138
- 7.7. Shared Derived Characters 140

8 Phylogenetic Inference: Maximum Likelihood Methods 147

- 8.1. Computational Procedure of ML Methods 147
- 8.2. Models of Nucleotide Substitution 152
- 8.3. Protein Likelihood Methods 159
- 8.4. Theoretical Foundation of ML Methods 162
- 8.5. Parameter Estimation for a Given Topology 163

9 Accuracies and Statistical Tests of Phylogenetic Trees 165

- 9.1. Optimization Principle and Topological Errors 165
- 9.2. Interior Branch Tests 168
- 9.3. Bootstrap Tests 171
- 9.4. Tests of Topological Differences 175
- 9.5. Advantages and Disadvantages of Different Tree-Building Methods 178

10 Molecular Clocks and Linearized Trees 187

- 10.1. Molecular Clock Hypothesis 187
- 10.2. Relative Rate Tests 191
- 10.3. Phylogenetic Tests 196
- 10.4. Linearized Trees 203

11 Ancestral Nucleotide and Amino Acid Sequences 207

- 11.1. Inference of Ancestral Sequences:
Parsimony Approach 207
- 11.2. Inference of Ancestral Sequences:
Bayesian Approach 208

- 11.3. Synonymous and Nonsynonymous Substitutions in Ancestral Branches 216
- 11.4. Convergent and Parallel Evolution 221

12 Genetic Polymorphism and Evolution 231

- 12.1. Evolutionary Significance of Genetic Polymorphism 231
- 12.2. Analysis of Allele Frequency Data 233
- 12.3. Genetic Variation in Subdivided Populations 236
- 12.4. Genetic Variation for Many Loci 244
- 12.5. DNA Polymorphism 250
- 12.6. Statistical Tests for Detecting Selection 258

13 Population Trees from Genetic Markers 265

- 13.1. Genetic Distance for Allele Frequency Data 265
- 13.2. Analysis of DNA Sequences by Restriction Enzymes 275
- 13.3. Analysis of RAPD Data 285

14 Perspectives 291

- 14.1. Statistical Methods 291
- 14.2. Genome Projects 292
- 14.3. Molecular Biology and Evolution 294

Appendices

- A. Mathematical Symbols and Notations 297
- B. Geological Timescale 299
- C. Geological Events in the Cenozoic and Mesozoic Eras 301
- D. Organismal Evolution Based on the Fossil Record 303

References 305

Index 329