

CONTENTS

PREFACE vii

1 INTRODUCTION 1

- 1-1 Definition of a Control System 1
- 1-2 Evolution of the Science of Control 3
- References 6

2 INTRODUCTORY EXAMPLE 9

- 2-1 Description of System 9
- 2-2 Construction of Mathematical Model 12
- 2-3 Linearization of Mathematical Model 16
- 2-4 Selection of Control Strategy 17
 - 2-4.1 Proportional Control 18
 - 2-4.2 Proportional-plus-derivative Control (PPD Control) 22
- 2-5 Summary 25
- Exercises 26

3 CONCEPTS OF STATE AND STATE VARIABLES 29

- 3-1 Introduction 29
- 3-2 Reduction of Differential Equations to Their Normal Form 31
- 3-3 Concepts of State and State Variables 33
- 3-4 State-model Description of Some Typical Engineering Systems 39
- 3-5 Definition of Linear Systems; Methods for Linearization 45
- 3-6 Effects of Disturbances on the State Differential Equation 53
- 3-7 Summary 53
- Exercises 56
- References 57

4 LINEAR ANALYSIS 59

- 4-1 Solution in Terms of the Matrix Exponential 60
- 4-2 Solution of Time-variant Linear Systems 67
- 4-3 Solution by Means of Laplace Transforms 69
- 4-4 Eigenvalues and Stability 71
- 4-5 Transfer Matrices and Transfer Functions 75
- 4-6 Derivation of State Models from Transfer Functions 77
- 4-7 Summary 83
- Exercises 83
- References 85

5 CONCEPTS OF CONTROLLABILITY AND OBSERVABILITY 87

- 5-1 Definitions 87
- 5-2 Invariance of the Eigenvalues to a Linear Transformation 93
- 5-3 Eigenvectors and Natural Modes 94
- 5-4 The Canonical Transformation 97
- 5-5 Criteria for Controllability 100
- 5-6 Observability and Observers 103
- 5-7 Effect of Multiple Eigenvalues 108
- 5-8 Summary 115
- Exercises 115
- References 117

6 LINEAR SERVOMECHANISMS—THE ANALYSIS PROBLEM 119

- 6-1 Definition 119
- 6-2 State-variable Description of Servomechanisms 122
- 6-3 Transfer-function Description of Linear Servos 129
- 6-4 Frequency-response Techniques 137
 - 6-4.1 Frequency-transfer Functions 139
 - 6-4.2 Bode Plots 144
 - 6-4.3 Nyquist Diagrams 146
 - 6-4.4 The Nyquist Stability Theorem 151
 - 6-4.5 Relative Stability; Gain and Phase Margins 155
- 6-5 Sensitivity and Error Analysis 158
 - 6-5.1 Errors due to Reference-input Changes 160
 - 6-5.2 Errors due to Parameter and Load Changes 163
 - 6-5.3 Concepts of Output Impedance and Compliance 170
- Exercises 172
- References 173

7 LINEAR SERVOMECHANISMS—THE SYNTHESIS PROBLEM 175

- 7-1 Performance Specifications 175
 - 7-1.1 Frequency-domain Specifications 177
 - 7-1.2 Time-domain Specifications 179
 - 7-1.3 Specification on Statistical Basis 183
- 7-2 Classification of Synthesis Methods 183
 - 7-2.1 The Trial-and-error Synthesis Technique 184
 - 7-2.2 Analytical Design Methods 186
 - 7-2.3 Optimum-control-system Design 187
- 7-3 Classical Design of Single-input-Single-output Servomechanisms 188
 - 7-3.1 The Analytical Approach—Two Examples 189
 - 7-3.2 The Root-locus Method (RLM) 196
 - Time Response from Root-locus Plot 197
 - Frequency Response from Root-locus Plot 199
 - Dominant Poles 200
 - Construction of Root Loci 204
 - 7-3.3 Synthesis by Trial and Error 213
 - 7-3.4 Cancellation and Algebraic Compensation 239
- 7-4 Synthesis of Multiple-input-Multiple-output Linear Servos 242
 - 7-4.1 Noninteraction 244
 - 7-4.2 Static Accuracy 245
 - 7-4.3 Stability 246
 - 7-4.4 Sensitivity Analysis 247

7-5 Summary	254
Exercises	255
References	260

8 NONLINEAR CONTROL SYSTEMS 263

8-1 Introduction	263
8-2 The State-space Analysis Method	264
8-2.1 Phase Trajectories	266
8-2.2 Singular Points or Equilibrium States	267
8-2.3 Construction of Phase Trajectories—The Phase Plane	269
The Direct-solution Method	270
Phase-plane Construction by Means of the Isocline Method	273
8-3 Stability of Nonlinear Systems	278
8-3.1 Definitions	278
Local Stability	279
Finite and Global Stability	286
Stability Test by the Indirect Approach	287
Stability Test by Liapunov's Direct Method	293
8-4 The Method of Harmonic Linearization (MLH)	306
8-4.1 Harmonic Balance	307
8-4.2 Describing Functions	309
Calculation of DF	311
Uses of DF	317
8-4.3 Effects of High-frequency Bias Signal	322
Dual-input Describing Function (DIDF)	322
Spectral Composition of the Output	325
Computation of DIDF: The Concept of Equivalent Nonlinearity	327
8-5 Summary	332
Exercises	332
References	335

9 SIGNAL-MODULATED SYSTEMS 337

9-1 Introduction	337
9-2 Why Modulation?	337
9-3 Theory of Amplitude-modulated Control Systems	343
9-3.1 Spectral-energy Distribution	343
9-3.2 AM-signal Compensation	345
Derivation of Transfer Function for Compensation Network	345
Design of AM Compensation Networks	350
9-3.3 A Design Example	353
Description of System	353
The Sensors	359
The Torquer	365
The Signal Mixers (Resolvers)	367
The Complete System	368
9-4 Sampled-data Systems	371
9-4.1 The Sampling Process—Spectrum Analysis	371
9-4.2 Demodulation of Sampled-data Signal	374
9-4.3 Difference Equations and the Sampling Process	376
Stability	379
Response Type	380
9-4.4 z-transform Theory	384
Definition of the Direct Transform	384

Some Useful Properties of the z Transform	387
---	-----

The Inverse z Transform	391
-------------------------	-----

The Pulse Transfer Function (PTF)	393
-----------------------------------	-----

Control-systems Analysis by Means of the z Transform	405
--	-----

9-5 Summary 411

Exercises	412
-----------	-----

References	413
------------	-----

10 OPTIMUM CONTROL—THE STATIC CASE 415

10-1 Introduction	415
10-2 Static-versus-dynamic Optimum Control	417
10-3 Static Optimization	423
10-3.1 The Mathematical-model Approach	423
Linear Performance Function with Linear Constraints	427
H Function Exhibiting Calculus Optima—The Method of Lagrange Multipliers	429
10-3.2 Optimization by Experimentation	434
10-3.3 Adaptive Controllers	438
Identification of the Plant Dynamics	440
Deciding on Proper Control Strategy	440
Modification of the Controller Parameters	440
Exercises	441
References	442

11 OPTIMUM CONTROL—THE DYNAMIC CASE 445

11-1 Introductory Remarks	445
11-2 Optimization by Means of Calculus of Variations	446
11-3 Dynamic Programming	456
11-3.1 The Principle of Optimality (PO)	459
11-4 Pontryagin's Maximum Principle (PMP)	467
11-4.1 Derivation of Pontryagin's Maximum Principle (PMP)	472
x(t ₁) Completely Unconstrained, t ₁ Fixed	473
x(t ₁) Partly Constrained, t ₁ Fixed	479
The Time-optimal Case	482
Switching Curves	487
11-5 Conclusions	491
Exercises	492
References	494

12 THE ROLE OF THE COMPUTER IN DESIGN AND OPERATION OF CONTROL SYSTEMS 495

12-1 Introductory Remarks	495
12-2 The Analog Computer	496
12-2.1 Computing Elements	496
12-2.2 Manual-mode Control—Slow Operation	496
12-2.3 Electronic-mode Control—Fast Operation	498
12-2.4 The Concept of Simulation—The Analog as a Synthesis Tool	499
Simulation on the Basis of State Models	499
Simulation on the Basis of Transfer Functions	504
12-2.5 Summary of Analog Features	505
12-3 The Digital Computer	506
12-3.1 Programming	507

12-3.2	Summary of Digital Features	511
12-3.3	Digital Simulation	513
12-3.4	Computer Control	514
12-4	Hybrid Computers	517
12-4.1	Reasons for Hybridization	518
12-4.2	Hybrid Computing Elements	519
12-4.3	Examples of Hybrid Computation	522
12-5	Summary	530
	Exercises	530
	References	532

APPENDIXES

A ELEMENTS OF VECTOR AND MATRIX ALGEBRA 533

A-1	Vectors	533
A-1.1	Special Vectors	533
A-1.2	Elementary Vector Operations	534
A-1.3	The Inner Vector Product	535
A-2	Matrices	537
A-2.1	Elementary Matrix Operations	537
A-2.2	Special Matrices	539
A-2.3	Determinants and Adjugate Matrices	541
A-2.4	The Matrix Inverse	542
	References	543

B FOURIER AND LAPLACE TRANSFORMS—A SUMMARY 545

B-1	Fourier Series and Transforms—The Periodic Case	545
B-2	Fourier Transforms—The Aperiodic Case	548
B-3	Laplace Transforms	550
B-4	Routh Criterion	552
	Reference	553

INDEX 555