

in the realm of physical chemistry—although the dividing line between analytical and physical chemistry is admittedly a hazy one. Not included are such topics as chemisorption and the mechanism of heterogeneous catalysis, studies of molecular structure, rotation-vibration spectra analysis, and the determination of energy-band separation in semiconductors.

Throughout the book fundamental concepts and limitations are stressed, so that the reader is provided with a sound basis for pursuing his own more specialized interests.

It is customary and appropriate to thank those who have contributed to such a work as this. I have had the good fortune to know and to have worked with some of the best applied spectroscopists in the world. To them I owe a great deal, for their instruction, advice, and encouragement. I would particularly like to acknowledge the help of Clara Craver, Peter Griffiths, N. J. Harrick, R. W. Hannah, and R. A. Nyquist, who have read portions of the manuscript and offered helpful comments. Finally, I would like to thank Miss Gertrude Binder and Mrs. Myrna Freeman for their dedicated effort in typing the manuscript.

A. LEE SMITH

Midland, Michigan
January 1979

CONTENTS

CHAPTER 1. INTRODUCTION

Scope of IR	1
History	1
Applicability	3
Selection of an Analytical Technique	4
Definitions	5

CHAPTER 2. INSTRUMENTATION

Infrared Physics	8
Source	9
Optical System	10
Detectors	12
Amplification	14
Sequential IR Spectrometers	15
Dispersive	15
<i>Conventional Monochromators</i>	17
<i>Multislit Spectrometers</i>	19
<i>Grill Spectrometers</i>	20
Nondispersive	21
<i>Dielectric Filter Spectrometers</i>	21
<i>Tunable Lasers</i>	22
<i>Optoacoustic Devices</i>	24
Spatial Detection Spectrometers	24
Multiplex Spectrometers	24
Dispersive: Hadamard Transform Spectrometers	25
Nondispersive: Interferometer Spectrometers	27
Selection of a Spectrometer	34
Performance Criteria	35
Definitions	35
Optimizing the Spectrometer Variables	40
Other Factors Affecting Performance	47
Performance Tests and Spectrometer Calibration	48
Transferability of Absorbance Data	51

CHAPTER 3. SPECTROSCOPIC LITERATURE	57
Infrared Reference Spectra	57
Spectrum-retrieval Systems	59
Evaluation of IR Spectra	63
Building a Private File	63
CHAPTER 4. SAMPLING TECHNIQUES	73
Solutions	73
Solvents	74
Concentration	75
Sample Thickness	76
Cell Blanks	77
Films	77
Mulls	77
Mineral-oil Mulls	78
Potassium Bromide Mulls (Pellets)	79
Attenuated Total Reflectance	84
Principles	84
Practice	86
Sampling	94
Gas Sampling	96
Special Sampling Methods	97
Reflectance	97
Pyrolysis	97
Spectra at High and Low Temperatures	97
Coupled IR Chromatography	100
Microsampling	103
Spectra at High Pressures	108
Emission Spectra	108
Aqueous Solutions	109
Cell Construction and Maintenance	111
Fixed-thickness Liquid Cells	111
Variable-thickness Liquid Cells	113
Gas Cells	113
Cell Maintenance: Repolishing Optical Materials	115
Determination of Cell Thickness	117
CHAPTER 5. QUALITATIVE APPLICATIONS	123
Introduction	123
Theory of IR Absorption	123

Rotational Spectra	124
Vibrational Spectra	125
Normal Modes	132
Band Shapes	137
Band Intensities	138
Overtone and Combination Bands	139
Group Frequencies: Uses and Limitations	140
General	140
Internal Factors Influencing Group Frequencies	142
<i>Mass Changes</i>	142
<i>Geometry</i>	144
<i>Vibrational Coupling</i>	145
<i>Bond Order</i>	146
<i>Electronic Effects</i>	147
<i>Association Effects</i>	155
External Influences	161
<i>Physical State</i>	162
<i>Solvent</i>	164
<i>Concentration</i>	167
<i>Temperature</i>	169
Interpretation of Spectra	171
Identification of Unknowns	172
Analysis of Mixtures	176
Use of Correlation Charts	179
Use of Chemical Derivatives	183
Spurious Bands	184
Summary—Check List for Unknown Identification	185
Applications	186
Polymers	186
<i>Identification</i>	187
<i>Structure</i>	190
<i>Reactions</i>	190
Surfactants	194
Biological Systems	194
Inorganics, Metal Organics, and Coordination Compounds	194
Environmental Problems	195
Analysis of Remote Atmospheres and Objects	198
Frequency Assignments	200
Comparison with Related Structures	200
Intensity Measurements	204
Raman and Other Spectroscopic Data	204

Rotation-Vibration Band Structure	204
Calculation of Force Constants	205
Isotopic Substitution	205
Polarization Data on Oriented Samples	206
Frequency Shifts in Solvent	206
CHAPTER 6 QUANTITATIVE APPLICATIONS	219
Use of IR in Quantitative Analysis	219
Laws of Absorption	220
Bouguer's Law	220
Beer's Law	221
Bouguer-Beer Law	221
Deviations from Absorption Laws	222
The Practice of Quantitative Analysis	223
Semiquantitative Analysis	225
Normal-precision Quantitative Analysis	227
Summary	230
High-precision Quantitative Analysis	231
Origin of errors in Quantitative Analysis	235
Calculations	243
Single Component	243
Multicomponent Analysis: Bouguer-Beer Law Holds	245
Multicomponent Analysis: Bouguer-Beer Law Not Valid	247
Analysis without Standards; Secondary Standards;	
Normalization Procedures	248
Statistical Evaluation of Results	249
Special Problems and Techniques	251
Quantitative Gas Spectra	251
Solids Analysis	251
Quantitative Analysis of Polymeric Materials	253
Quantitative Analysis of Associated Species	254
Group Analysis	256
Attenuated Total Reflectance	256
Analysis for Trace Impurities	257
<i>Long Sample Paths</i>	257
<i>Correlation Spectroscopy</i>	259
<i>Concentration Techniques</i>	260
<i>Indirect Methods</i>	261
Combination Techniques	262
Examples	262
Kinetic Studies	268

Infrared Process-stream Analyzers	270
Nondispersive Analyzers	270
Dispersive Analyzers	272

Appendix 1. Correlation Charts

278

Appendix 2. Characteristic Absorption Frequencies

286

INDEX

315