

Table of Contents

FOREWORD TO THE FIRST EDITION by Professor H. L. Kornberg, F.R.S.	v
PREFACE TO THE FIRST EDITION	vii
PREFACE TO THE SECOND EDITION	ix
CONSTANTS	xv
1. MATHEMATICS REVISION	1
Fractions, multiples and powers	2
Logarithms	4
Series	8
Graphic representation of the relationship between two quantities x and y	10
The Calculus	13
2. SI UNITS AND THEIR USAGE	14
Choice of units	15
SI conventions	16
Adoption of SI	17
Conversion to SI	20
Reporting quantities	23
Bibliography on SI	25
3. THE BEHAVIOUR OF GASES	26
Kinetic theory of gases	26
Ideal gas laws	27
Solubility of gases in liquids	37
Real gases	39
Measurement of gas uptake or output by biological systems	47
Problems	55

4. SOME PROPERTIES OF AQUEOUS SOLUTIONS	58
Vapour pressure	59
Solutions of non-electrolytes	61
Osmosis	69
Solutions of electrolytes	79
Solubility of salts in water	89
Problems	96
5. ACIDS, BASES AND BUFFERS IN AQUEOUS SOLUTION	99
The meaning of pH	100
Acids and bases	102
The interaction of an acid with a base	112
Buffer mixtures and their buffer capacity	124
Dissociation of polyprotic, weak acids	127
pH indicators	133
The pH's of dilute, aqueous solutions of salts	134
Problems	140
6. BIOCHEMICAL RELEVANCE OF pH	142
The pH-dependent ionization of amino acids	143
The pH-dependent ionization of proteins	162
Effects of pH change on non-protein protoplasmic components	176
pH and metabolic reactions involving protons	177
Problems	178
7. BACKGROUND THERMODYNAMICS	181
Conservation of energy	182
Intrinsic energy	183
Enthalpy	184
Entropy	187
Free energy	188
Spontaneous reactions	191
Thermodynamic standard states and standard functions	192
ΔG° ; free energy change under standard conditions	194
ΔG ; free energy change under non-standard conditions	202
How informative is the value of ΔG ?	206
Thermodynamics of reactions in aqueous solutions	206
Problems	209

8. CHEMICAL EQUILIBRIUM AND THE COUPLING OF REACTIONS	212
The nature of chemical equilibrium	212
The relationship between the equilibrium constant and the standard free energy change	215
Temperature dependence of the equilibrium constant	220
Equilibria of reactions involving protons	223
Coupling of reactions	227
Problems	232
9. THE APPLICATION OF THERMODYNAMICS TO BIOCHEMISTRY	236
Open systems	237
Determination of thermodynamic constants	238
Biochemical relevance of classical thermodynamics	239
The role of ATP	241
'High energy compounds'	243
Coupled reactions involving ATP	245
10. THE KINETICS OF CHEMICAL REACTIONS	248
Influence of reactant concentrations on reaction velocity	249
Rate and kinetic equations	251
Order of a reaction	253
Determination of rate constants	263
How the temperature affects the velocity of a reaction	264
Energy of activation	267
Catalysis	271
Why study the kinetics of chemical reactions?	274
Problems	276
11. THE KINETICS OF ENZYME-CATALYSED REACTIONS	278
How to assay the catalytic activity of an enzyme	280
Kinetic studies of enzyme-catalysed reactions	281
The Michaelis equation; K_m and V_{max}	283
Inhibition of enzyme-catalysed reactions	294
Allosteric effects	306
Enzymic catalysis of readily reversible reactions	308
Enzymic catalysis of reactions involving two substrates	309
Effects of temperature on enzymic reactions	312
Effect of pH on the rates of enzyme-catalysed reactions	317
Problems	319

12. OXIDATION AND REDUCTION	322
The oxidation-reduction reaction	323
Electrode potentials and e.m.f.	324
ΔG of an oxidation-reduction reaction	333
Redox potentials	335
How the pH may affect the redox potential of a redox couple	342
Potentiometric titration	349
Redox indicators	351
Sluggish redox couples	353
Use of tables of standard redox potentials	356
Electron transport and the respiratory chain	359
Problems	360
APPENDIX	363
Glass electrode pH meter	363
Polarography	364
Answers to problems	366
REFERENCES AND SUGGESTED READING	370
TABLE OF LOGARITHMS TO THE BASE 10	372
TABLE OF ANTILOGARITHMS	374
INDEX	376