

CONTENTS

<i>Preface</i>	ix
----------------	----

<i>Acknowledgments</i>	xi
------------------------	----

1. Weather and Life

1.1. Physiology, Ecology, and Biometeorology	1
1.2. An Example of a Biometeorological Study	2
1.3. Reproducible and Specific Relations	5
1.4. Readjustment of Living Organisms to Their Environment	6
1.5. Readjustment of the Environment by Living Organisms	10
1.6. The Multidiscipline Approach	12

2. Sampling of the Atmosphere: Time Considerations

2.1. Time Variability in the Atmosphere	13
2.2. Concentration and Dosage	19
2.3. Radioactivity Units	25
2.4. Degree Days	28
2.5. Concentration and Flux	30
2.6. Physical Time Lags	34
2.7. Biological Clocks and Time Lags	40

3. Sampling of the Atmosphere: Space Considerations

3.1. Space Variability in the Atmosphere	44
3.2. Micrometeorology	46
3.3. Mesometeorology	48
3.4. Macrometeorology	50
3.5. Network Spacing	53
3.6. Some Instrument Sampling Problems	59

4. The Design of Biometeorological Experiments

4.1. Some Preliminary Steps	64
4.2. Visual Observations	66
4.3. Questionnaires	71
4.4. Other Medical Statistics	74
4.5. Controlled Laboratory Experiments	76

4.6. Outdoor Quasi-Controlled Experiments	83
4.7. Studies Based on Climatological and Other Routine Observations	87

5. Tables, Graphs, and Charts

5.1. Introduction	89
5.2. Single-Variable Tables and Graphs	90
5.3. Contingency Tables	91
5.4. Graphical Displays	93
5.5. Cartography and Spatial Averaging	99
5.6. Vector Diagrams	103
5.7. Streamlines and Trajectories	111

6. Statistical Methods I

6.1. Uses of Statistical Methods	114
6.2. Statistical Normalization	115
6.3. Empirical Statistical Methods	116
6.4. Multivariate Analysis	119
6.5. Spatial Relations	124
6.6. Extreme-Value Analysis	126
6.7. Peak-to-Mean Ratios	132

7. Statistical Methods II: Time Series

7.1. Normals	137
7.2. Variance and Spectra	139
7.3. The Blackman-Tukey Method of Spectral Analysis	141
7.4. Computational Considerations	143
7.5. Other Methods of Estimating Spectra	147
7.6. Nonstationarity	148
7.7. Cross-Spectrum Analysis	149
7.8. Persistence	151

8. Physical Methods

8.1. Deductive and Inductive Reasoning	156
8.2. Dimensional Analysis	157
8.3. Modeling	162
8.4. Water Budget	164
8.5. Metabolism	169
8.6. Energy Balance	173
8.7. Energy Chains	176
8.8. Diffusion and Ventilation	182

9. Physical Methods: Illustrative Examples	185
9.1. Introduction	186
9.2. The Effect of Humidity on Human Comfort	188
9.3. Wind Chill	193
9.4. Heat Stress	193
9.5. Ecosystem Competition	201

10. Synoptic Applications

10.1. The Synoptic Method	205
10.2. Stagnating Anticyclones: Pollution Potential Forecasting	206
10.3. Distant Transport of Gases and Particles	211
10.4. Distant Travel of Insect and Birds	216
10.5. The Effect of Contrails on Surface Temperature: A Simulation Model	221
10.6. Synoptic Maximization Techniques	224
10.7. Ecological Meteorotropisms	226

11. Seasonal Relationships

11.1. General Reflections	228
11.2. Evapotranspiration Estimates	229
11.3. Soil Moisture Budgets	239
11.4. Drought	243
11.5. Agricultural Yield Prediction	246
11.6. Seasonal Studies of Health	255
11.7. Pollution Studies	255

12. Studies of Past Climates

12.1. Introduction	258
12.2. The Instrument Era	259
12.3. The Historical Period	261
12.4. Paleoclimatology	263
12.5. Physical Models	268
12.6. Simulation of Climatic Change	272
12.7. Climatic Determinism	273
12.8. Climatic Adaptation	275

13. Climatic Classification and Indices

13.1. Historical Introduction	277
13.2. Air Pollution Indices	279
13.3. Water Budget and Soil Moisture Indices	283

13.4. Continentality Indices	285
13.5. Agricultural Indices	287
13.6. Human Comfort Indices	289
13.7. Climatology	294
14. Engineering and Economic Applications	
14.1. Impact of Weather and Climate on Human Activities	296
14.2. Engineering Meteorology	297
14.3. The Cost/Loss Ratio	297
14.4. Weather Services and the National Economy	301
Appendix. Problems	
References	
<i>Subject Index</i>	333