

CONTENTS

PREFACE	xi
NOTES ON THE SECOND EDITION	xvi
1. INTRODUCTION	1
1.1	<i>Some definitions</i> 1
1.2	<i>The development of biometry</i> 3
1.3	<i>The statistical frame of mind</i> 5
2. DATA IN BIOLOGY	8
2.1	<i>Samples and populations</i> 8
2.2	<i>Variables in biology</i> 10
2.3	<i>Accuracy and precision of data</i> 13
2.4	<i>Derived variables</i> 16
2.5	<i>Frequency distributions</i> 19
3. THE HANDLING OF DATA	32
3.1	<i>Calculators and computers</i> 33
3.2	<i>Efficiency and economy in data processing</i> 36
4. DESCRIPTIVE STATISTICS	38
4.1	<i>The arithmetic mean</i> 39
4.2	<i>Other means</i> 42
4.3	<i>The median</i> 43
4.4	<i>The mode</i> 46

4.5 Simple statistics of dispersion 48
 4.6 The standard deviation 49
 4.7 Sample statistics and parameters 52
 4.8 Coding of data before computation 54
 4.9 Methods for computing mean and standard deviation 55
 4.10 The coefficient of variation 58

5. INTRODUCTION TO PROBABILITY DISTRIBUTIONS: BINOMIAL AND POISSON 62

5.1 Probability, random sampling, and hypothesis testing 64
 5.2 The binomial distribution 70
 5.3 The Poisson distribution 82
 5.4 Some other discrete probability distributions 94

6. THE NORMAL PROBABILITY DISTRIBUTION 98

6.1 Frequency distributions of continuous variables 99
 6.2 Properties of the normal distribution 101
 6.3 A model for the normal distribution 106
 6.4 Applications of the normal distribution 109
 6.5 Fitting a normal distribution to observed data 111
 6.6 Skewness and kurtosis 114
 6.7 Graphic methods 117
 6.8 Other continuous distributions 126

7. ESTIMATION AND HYPOTHESIS TESTING 128

7.1 Distribution and variance of means 129
 7.2 Distribution and variance of other statistics 137
 7.3 Introduction to confidence limits 140
 7.4 Student's *t*-distribution 145
 7.5 Confidence limits based on sample statistics 147
 7.6 The chi-square distribution 152
 7.7 Confidence limits for variances 155
 7.8 Introduction to hypothesis testing 157
 7.9 Tests of simple hypotheses employing the normal and *t*-distributions 170
 7.10 Testing the hypothesis $H_0: \sigma^2 = \sigma_0^2$ 175

8. INTRODUCTION TO ANALYSIS OF VARIANCE 179

8.1 The variances of samples and their means 180
 8.2 The *F*-distribution 185
 8.3 The hypothesis $H_0: \sigma_1^2 = \sigma_2^2$ 189

8.4 Heterogeneity among sample means 191
 8.5 Partitioning the total sum of squares and degrees of freedom 198
 8.6 Model I anova 202
 8.7 Model II anova 205

9. SINGLE CLASSIFICATION ANALYSIS OF VARIANCE 208

9.1 Computational formulas 209
 9.2 General case: unequal *n* 210
 9.3 Special case: equal *n* 219
 9.4 Special case: two groups 222
 9.5 Special case: a single specimen compared with a sample 229
 9.6 Comparisons among means: planned comparisons 232
 9.7 Comparisons among means: unplanned comparisons 242
 9.8 Finding the sample size *n* required for a test 262

10. NESTED ANALYSIS OF VARIANCE 271

10.1 Nested anova: design 271
 10.2 Nested anova: computation 274
 10.3 Nested anovas with unequal sample sizes 293
 10.4 The optimal allocation of resources 309

11. TWO-WAY ANALYSIS OF VARIANCE 321

11.1 Two-way anova: design 321
 11.2 Two-way anova with replication: computation 324
 11.3 Two-way anova: significance testing 332
 11.4 Two-way anova without replication 344
 11.5 Paired comparisons 354
 11.6 Unequal subclass sizes 360
 11.7 Missing values in a randomized blocks design 364

12. MULTIWAY ANALYSIS OF VARIANCE 372

12.1 The factorial design 372
 12.2 A three-way factorial anova 374
 12.3 Higher-order factorials 387
 12.4 Other designs 393
 12.5 Anova by computer 395

13. ASSUMPTIONS OF ANALYSIS OF VARIANCE 400

13.1 A fundamental assumption 401
 13.2 Independence 401
 13.3 Homogeneity of variances 402
 13.4 Normality 412

13.5	<i>Additivity</i>	414
13.6	<i>Transformations</i>	417
13.7	<i>The logarithmic transformation</i>	419
13.8	<i>The square root transformation</i>	421
13.9	<i>The Box-Cox transformation</i>	423
13.10	<i>The arcsine transformation</i>	427
13.11	<i>Nonparametric methods in lieu of single classification anova</i>	429
13.12	<i>Nonparametric methods in lieu of two-way anova</i>	445
14.	LINEAR REGRESSION	454
14.1	<i>Introduction to regression</i>	455
14.2	<i>Models in regression</i>	458
14.3	<i>The linear regression equation</i>	461
14.4	<i>Tests of significance in regression</i>	469
14.5	<i>More than one value of Y for each value of X</i>	477
14.6	<i>The uses of regression</i>	491
14.7	<i>Estimation of X from Y</i>	496
14.8	<i>Comparison of regression lines</i>	499
14.9	<i>Analysis of covariance</i>	509
14.10	<i>Linear comparisons in anova</i>	530
14.11	<i>Examination of residuals and transformations in regression</i>	539
14.12	<i>Nonparametric tests for regression</i>	546
14.13	<i>Model II regression</i>	547
15.	CORRELATION	561
15.1	<i>Correlation and regression</i>	562
15.2	<i>The product-moment correlation coefficient</i>	565
15.3	<i>The variance of sums and differences</i>	573
15.4	<i>Computation of the product-moment correlation coefficient</i>	575
15.5	<i>Significance tests in correlation</i>	583
15.6	<i>Applications of correlation</i>	591
15.7	<i>Principal axes and confidence regions</i>	594
15.8	<i>Nonparametric tests for association</i>	601
16.	MULTIPLE AND CURVILINEAR REGRESSION	617
16.1	<i>Multiple regression: computations</i>	618
16.2	<i>Multiple regression: significance tests</i>	631
16.3	<i>Path analysis</i>	642
16.4	<i>Partial and multiple correlation</i>	656
16.5	<i>Choosing predictor variables</i>	661
16.6	<i>Curvilinear regression</i>	671
16.7	<i>Advanced topics in regression and correlation</i>	683

17.	ANALYSIS OF FREQUENCIES	691
17.1	<i>Tests for goodness of fit: introduction</i>	692
17.2	<i>Single classification goodness of fit tests</i>	704
17.3	<i>Replicated tests of goodness of fit</i>	721
17.4	<i>Tests of independence: two-way tables</i>	731
17.5	<i>The analysis of three-way and multiway tables</i>	747
17.6	<i>Finding the sample size n required to test the difference between two percentages</i>	765
17.7	<i>Randomized blocks for frequency data</i>	767

18. MISCELLANEOUS METHODS 779

18.1	<i>Combining probabilities from tests of significance</i>	779
18.2	<i>Tests for randomness: runs tests</i>	782
18.3	<i>Randomization tests</i>	787
18.4	<i>The jackknife</i>	795
18.5	<i>The future of biometry: data analysis</i>	799

APPENDICES

A1	<i>Mathematical appendix</i>	806
A2	<i>A package of statistical computer programs</i>	822

BIBLIOGRAPHY 826

AUTHOR INDEX 839

SUBJECT INDEX 843