

Contents

Preface	iii
1. Introduction	1
Quantification of biology	1
Levels of growth	2
Growth considered as the multiplication of individuals	2
Higher plant organization and growth measurements	2
Aspects of growth at the cellular level	5
Quantification of growth	6
Early work	6
The advent of curve fitting	7
Increasing interest in single leaf growth	9
Advantages of curve fitting	10
Biological applications of the quantitative analysis of growth	11
Interrelationships between growth and photosynthesis	11
Mechanistic modelling of physiological processes	12
Empirical models of the growth of plant parts	13
Practical applications of growth analysis	14
The method and the user	14
2. Whole plant growth analysis	16
Principles of whole plant growth analysis	17
Growth rates	17
Unit leaf rate	18
Leaf area ratio	21
Other morphological ratios	22
The fundamental equation in growth analysis	23
Classical growth analysis: methods	23
Ratios	23
Rates: mathematical aspects	24
Rates: statistical and biological aspects	27
Classical growth analysis: applications	36
	ix

Difficulties in the interpretation of rate trends	36	Concluding assessments of the estimated function	106
A simulation experiment to find a suitable harvest interval for realistic rate estimation	37	The distributions of the estimates of the parameters and their variances: a simulation study	109
A variety of uses for whole plant growth analysis	41	Testing the estimation model assumptions	114
Experimental data: a comparative study of four species	43	Testing for normality of the logarithmically transformed data	114
Consequences of the interdependence of unit leaf rate and leaf area ratio	47	Assessing the assumption of constant variance	117
The functional approach: methods	50	The Richards function with heteroscedastic data	121
Polynomial exponential functions	51	The weighted maximum likelihood estimation of the function	121
The Richards function	53	A simulation study to assess the performance of weighted and non-weighted estimations with heteroscedastic data	127
Splined function	53	Comparison of the weighted and non-weighted methods with leaf growth data	130
Ratios	54	The nature of the heteroscedasticity of individual leaf growth data	133
Unit leaf rate	55	Structural and developmental variability	133
The functional approach: applications	56	The possibility of removing developmental variation	136
Experimental data: a comparative study of four species (continued)	57		
3. Linear regression theory	65	5. Single leaf growth and the Richards function: applications	144
Regression in general	66	Biologically relevant parameters	145
The principle of least squares	69	Correlations between parameter estimates	145
Polynomial regression: the straight line	70	Parameter combinations: 'secondary' parameters	146
Least squares estimation	70	Parameter comparisons within and between species	149
The sampling distributions of the parameter estimates	73	Primary parameters	149
Maximum likelihood estimation	75	Secondary parameters	153
Polynomial regression: general	80	Curves derived from fitted Richards functions	159
The variances and covariances of the parameter estimates	83	Relative growth rate	161
Higher order polynomials	84	Specific leaf area	167
Testing the appropriateness of a function	84	The species compared	171
4. Single leaf growth and the Richards function: methodology	86	6. Relationships between plant parts	173
Determinate growth and sigmoid functions	86	Linear allometry: mathematical aspects	174
Sigmoid functions	87	Theorems on allometry	175
The Richards function	89	Organ systems in which linear allometry may occur	178
Derivations of the Richards function	90	Allometry and the Richards function	180
Properties of the Richards function	92	Linear allometry: physiological aspects	181
The Gompertz function	98	Linear allometry: statistical aspects	182
Estimating the Richards function	100	Estimating a linear functional relationship by maximum likelihood	184
The Newton-Raphson method	101	The maximum likelihood model in relation to plant growth data	192
Hadley's method of obtaining starting values	103	Linear segment and curvilinear allometry	195
Other iterative methods	105	Assessment of the situation	195

Linear segments	196
Curvilinear allometry	197
Applications	201
Properties of the data	201
Some effects of changes in the estimation method	204
Species results	209
The physiological significance of the allometric data	218
7. The whole plant: a synthetic growth model	219
Some general mathematical relationships involved in plant growth	220
Theorems 7.1 and 7.2	220
Relative growth rates and component entity ratios	222
The mathematics of exponential growth	223
Theorem 7.3	223
Growth of the plant and its parts at Levels 1 and 1a	225
The model: methods	230
Foliage growth	230
Stem and root growth	234
Plant growth	236
Discussion on model formulation	239
The model: results	240
Sunflower	241
Wheat	246
Maize	249
Birch	252
The model: discussion	257
Postscript	260
Appendix	261
Glossary of symbols	276
Bibliography	284
Plant index	300
Author index	301
Subject index	304