

Contents

Preface to the Second Edition, ix

Preface to the First Edition, xiii

1 Introduction, 1

Basic tenets of cytogenetics, 9

Inheritance of variation, 11

Chromosomal theory of inheritance, 11

Molecular cytogenetics, 14

Bibliography, 19

2 Architecture of the Chromosome: I. Prokaryotic and Viral Chromosomes. 22

22

The bacterial chromosomes, 23

Plasmids and episomes, 28

The chromosomes of viruses, 32
 Double-stranded DNA viruses, 35
 Single-stranded DNA viruses, 42
 RNA viruses, 45
Genomes of mitochondria and plastids, 48
 Mitochondrial DNA (mtDNA), 49
 Chloroplast DNA (chlDNA), 51
Mesokaryotes, 54
Bibliography, 59

3 Architecture of the Chromosome: II. Eukaryotic Chromosomes, 62

Chemical constituents of chromatin, 64
Linear differentiation, 72
 Telomeres, 73
 Centromeres, 77
 Nucleolar organizers, 85
 Chromomeres, 103
 Euchromatin and heterochromatin, 106
Unique and repetitive DNA, 121
 Simple-sequence, or highly repetitive, DNA, 129
 The interspersed nature of euchromatin, 132
Different forms of chromosomes, 138
 Somatic metaphase chromosomes, 138
 Meiotic prophase chromosomes, 157
 Polyteny chromosomes, 162
 B chromosomes, 170
 Chromosomes of ciliated protozoans, 175
Bibliography, 177

4 Cell Division: The Basis of Genetic Continuity and Transmission, 184

Mitosis, 185
 Variations in cell division, 193
 Endomitosis and polyteny, 194
Meiosis, 200
 Preleptonema, 202
 Leptonema (thin-thread stage), 204
 Zygonema (yoke-thread stage), 207
 Pachynema (thick-thread stage), 212
 Diplonema (double-thread stage), 213
 Diakinesis, 220
 Metaphase I, 222
 Anaphase, 225
 Telophase, 227
 Second meiotic division, 227

Oogenesis, 229	
Duration of meiosis, 231	
<i>Meiosis and Mendelian genetics, 234</i>	
<i>Meiosis, linkage, and crossing over, 241</i>	
Linear order of the genes and map distances, 244	
Interference, 247	
<i>Analysis of linkage in human beings, 248</i>	
<i>Chromosomal basis of crossing over, 257</i>	
Chromosomal evidence for crossing over, 261	
<i>Position and frequency of crossing over, 264</i>	
<i>Discrepant crossover events, 266</i>	
Somatic or mitotic crossing over, 267	
Negative interference, 269	
Gene conversion, 270	
<i>Genetic control of meiosis, 272</i>	
<i>Bibliography, 279</i>	
5 Molecular Cytogenetics, 283	
<i>Replication, 285</i>	
Rate of replication, 294	
<i>Transcription, 304</i>	
Prokaryotic transcription, 305	
Eukaryotic transcriptional systems, 314	
<i>Genetic recombination and repair, 321</i>	
Episomal integration and excision, 326	
DNA repair mechanisms, 334	
<i>Gene amplification, 337</i>	
<i>The nature of a gene, 342</i>	
<i>Bibliography, 353</i>	
6 Variation: Nature and Consequences of Altered Chromosomal Structure, 356	
<i>Deficiencies, 358</i>	
<i>Duplications, 367</i>	
<i>Inversions, 374</i>	
Paracentric inversions, 375	
Pericentric inversions, 380	
Inversions and evolution, 382	
<i>Translocations, 386</i>	
Translocations and evolution, 392	
<i>Isochromosomes, 400</i>	
<i>Ring chromosomes, 401</i>	
<i>Bibliography, 403</i>	

7

Variation: Sources and Consequences Involving Chromosome Number, 406*Aneuploidy, 407*

- Trisomic types, 410
- Monosomics and nullisomics, 415
- Aneuploidy of sex chromosomes, 417

*Centric Fusion and Fission, 421**Euploidy, 428*

- Monoploidy, 428
- Autopolyploidy, 431
- Allopolyploidy, 434
- Polyplody in animals, 440

Bibliography, 441

8

Variation: Sources and Consequences Involving Variant Chromosomal Systems, 443*Asexual reproduction in plants, 448**Parthenogenesis in animals, 453**Chromosomal diminution and elimination, 456**Cytology of the coccids, 463**Bibliography, 471*

9

Evolution of the Karyotype, 473*From the prokaryotype to the eukaryotype?, 477**Selective regulation of the karyotype, 487**The amount of DNA per genome, 494**Evolution of individual chromosomes, 509**Karyotype changes within taxa, 518*

- Chromosome size and number, 522

*Karyotype trends, 534**Bibliography, 543**Journals and Reviews of Cytogenetic Interest, 549**Index, 551*