

Contents

Chapter 1	Introduction to Biological Computing	1
1.1	Biological applications of computers	1
1.2	Elements of computer science	3
1.3	Number systems	4
1.4	Computer hardware	5
1.5	Summary	12
Chapter 2	Programming Languages	13
2.1	Introduction	13
2.2	Machine language programs	14
2.3	High level languages	16
Chapter 3	Introduction to BASIC	20
3.1	Program development	20
3.2	BASIC programs	21
3.3	The problem	22
3.4	The program structure	23
3.5	The complete program	31
3.6	Summary	32
3.7	Problems	33
Chapter 4	Loops and Arrays	35
4.1	The simple FOR ... NEXT loop	35
4.2	Numeric arrays	40
4.3	Nested FOR ... NEXT loops and two dimensional arrays	45
4.4	Summary	50
4.5	Problems	51
Chapter 5	Functions	52
5.1	Outline of BASIC functions	52
5.2	The use of BASIC functions in programs	53
5.3	Example programs using BASIC functions	56
5.4	User defined functions	60
5.5	Summary	61
5.6	Problems	62

Contents		64
Chapter 6	Program Control Structures	
6.1	Introduction	64
6.2	Unconditional commands	64
6.3	Conditional commands	67
6.4	Summary	75
6.5	Problems	76
Chapter 7	Strings	77
7.1	Introduction	77
7.2	BASIC string commands	77
7.3	Print formatting	82
7.4	Example programs	83
7.5	Summary of commands	86
7.6	Problems	87
Chapter 8	Disk, Files and Operating Systems	89
8.1	Introduction	89
8.2	Disks	89
8.3	Files	93
8.4	Operating systems	97
Chapter 9	Computer Graphics and Image Processing	102
9.1	Introduction	102
9.2	Hardware review	102
9.3	Programming principles	106
9.4	Biological applications	110
9.5	Summary	114
Chapter 10	Structured Programming	115
10.1	Historical background	115
10.2	What is structured programming?	115
10.3	Structured commands in BASIC	116
10.4	Writing structured programs	117
10.5	Example	119
10.6	Summary	123
10.7	Problems	123
Chapter 11	Computer Models	124
11.1	Introduction	124
11.2	Model 1 – energy balance in living organisms	124
11.3	Model 2 – selection against a recessive allele	131
11.4	Model 3 – competition between two species of animal	134
11.5	Summary	139
Chapter 12	Information Technology	140
12.1	Introduction	140
12.2	Computer communications	140
12.3	Local area networks	142
12.4	Databases	144

12.5	Online information retrieval	146
12.6	DNA databases	149
12.7	Summary	151
Chapter 13	Working with Mainframe Computers	152
13.1	Introduction	152
13.2	MINITAB	154
13.3	SPSS-X	156
Chapter 14	Program Optimisation	161
14.1	Introduction	161
14.2	Optimisation of BASIC programs	162
Chapter 15	Summary	165
Appendix A	Number Storage Systems and Sources of Error	169
Appendix B	ASCII Conversion Table	174
Appendix C	Microcomputer Interfacing	176
Appendix D	Answers to selected problems	180
Appendix E	Bibliography	185
Index		187

Computer science is not a subject which can be learned entirely from books. The only reliable method of developing an understanding of computers is to use one. In computing jargon (of which there is lots) this is known as gaining 'hands-on' experience. Do not be afraid of making mistakes. Unless you are delving around inside the computer you will not damage it. Making and correcting mistakes is one of the best methods available for learning about computers. Consequently, I would recommend that whenever it is possible you should type in and run the example programs. You will probably make some typing errors as you do so. These typing errors will prevent the program from working correctly, but identifying and correcting the errors will be a valuable experience. It is an unfortunate fact that, as the example programs become more complex, the